Browse > Article
http://dx.doi.org/10.14478/ace.2021.1030

Efficient Adsorption of Methylene Blue from Aqueous Solution by Sulfuric Acid Activated Watermelone Rind (Citrullus lanatus)  

Lee, Seo-Yun (Department of Seed Biotechnology, Graduate School of International Agricultural Technology, Seoul National University)
Choi, Hee-Jeong (Department of Biosystems and Convergence Engineering, Catholic Kwandong University)
Publication Information
Applied Chemistry for Engineering / v.32, no.3, 2021 , pp. 348-356 More about this Journal
Abstract
The lignocellulose-based dried watermelon rind (WR) was modified with sulfuric acid, namely SWR for enhancement of methylene blue (MB) adsorption from the aqueous solution. According to FT-IR analysis, after the modification of WR with sulfuric acid, the functional groups of R-SO3H, COOH and -OH groups was formated or enhanced on the surface of the WR. Moreover, the point of zero charge (pHpzc) was changed from 6.3 to 4.1 after modification, which widened the range for adsorbing of cationic dye MB. The adsorption process of MB onto the SWR was suitable for pseudo-2nd-order and Langmuir model and the maximum adsorption capacity of Langmuir was found to be 334.45 mg/g at pH 7. In adition, the adsorption process occurs through the electrostatic interaction, hydrogen bridge formation, electron donor-acceptor relationship, and 𝜋-𝜋 electron dispersing force between functional groups on the carbon surface with MB molecules. Depending on functional groups available on the SWR surface, the MB adsorption mechanism can occur in combination with various interactions.
Keywords
Adsorption; Cationic dye; Kinetic; Lignocellulose; Sulfonation; Watermelone rind;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. W. Yu and H. J. Choi, Application of hybrid bead, persimmon leaf and chitosan for the treatment of aqueous solution contaminated with toxic heavy metal ions, Water Sci. Technol., 78(4), 837-847 (2018).   DOI
2 S. Manna, D. Roy, P. Saha, D. Gopakumar, and S. Thomas, Rapid methylene blue adsorption using modified lignocellulosic materials, Process Saf. Environ. Process, 107, 346-356 (2017).   DOI
3 H. J. Choi, Removal of Pb(II) from aqueous solution using hybrid adsorbent of sericite and spent coffee grounds, Appl. Chem. Eng., 29(5), 571-580 (2018).   DOI
4 Q. Feng, H. Cheng, F. Chen, X. Zhou, P. Wang, and Y. Xie, Investigation of cationic dye adsorption from water onto acetic acid lignin, J. Wood Chem. Technol., 36, 173-181 (2015).   DOI
5 A. H. Jawad, N. F. H. Mamat, M. F. Abdullah, and K. Ismail, Adsorption of methylene blue onto acid-treated mango peels: kinetic, equilibrium and thermodynamic, Desalin. Water Treat., 59, 210-219 (2017).   DOI
6 H. E. Osman, R. K. Badwy, and H. K. Ahmad, Usage of some agricultural by-products in the removal of some heavy metals from industrial wastewater, J. Phytol. Res., 2, 51-62 (2010).
7 R. Roy, M. D. Sajjadur Rahman, and D. E. Raynie, Recent advances of greener pretreatment technologies of lignocellulose, Curr. Res. Green Sustain. Chem., 3, 100035 (2020).   DOI
8 R. A. Rashid, A. H. Jawad, M. A. M. Ishak, and N. N. Kasim, KOH-activated carbon developed from biomass waste: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene blue uptake, Desalin. Water Treat., 57(56), 1-11 (2016).   DOI
9 H. J. Choi and S. W. Yu, Biosorption of methylene blue from aqueous solution by agricultural bioadsorbent corncob, Environ. Eng. Res., 24(1), 99-106 (2019).   DOI
10 E. Santoso, R. Ediati, Y. Kusumawati, H. Bahruji, D. O. Sulistiono, and D. Prasetyoko, Review on recent advances of carbon based adsorbent for methylene blue removal from waste water, Mater. Today Chem., 16, 100233 (2020).   DOI
11 S. Zhu, J. Xu, Y. Kuang, Z. Cheng, Q. Wu, J. Xie, B. Wang, W. Gao, J. Zeng, J. Li, and K. Chen, Lignin-derived sulfonated porous carbon from cornstalk for efficient and selective removal of cationic dyes, Ind. Crops Prod., 159, 113071 (2021).   DOI
12 Aruna, N. Bagotia, A. K. Sharma, and S. Kumar, A review on modified sugarcane bagasse biosorbent for removal of dyes, Chemosphere, 268, 129309 (2021).   DOI
13 Y. Li, H. Xiao, Y. Pan, and L. Wang, Novel composite adsorbent consisting of dissolved cellulose fiber/microfibrillated cellulose for dyr removal from aqueous solution, ACS Sustain. Chem. Eng., 6, 6994-7002 (2018).   DOI
14 L. Zhang, H. Lu, J. Yu, E. McSporran, A. Khan, Y. Fan, Y. Yang, Z. Wang, and Y. Ni, Preparation of high-strength sustainable lignocellulose gels and their applications for antiultraviolet weathering and dye removal, ACS Sustain. Chem. Eng., 7(3), 2998-3009 (2019).   DOI
15 H. J. Choi, Applicability of composite beads, spent coffee grounds/chitosan, for the adsorptive removal of Pb(II) from aqueous solutions, Appl. Chem. Eng., 30(5), 536-545 (2019).   DOI
16 S. N. Surip, A. S. Abdulhameed, Z. N. Garba, S. S. A. Syed-Hassan, K. Ismail, and A. H. Jawa, H2SO4-treated Malaysian low rank coal for methylene blue dye decolourization and cod reduction: Optimization of adsorption and mechanism study, Surf. Interfaces, 21, 100641 (2020).   DOI
17 H. J. Choi, Assessment of the adsorption kinetics, equilibrium and thermodynamic for Pb(II) removal using a hybrid adsorbent, eggshell and sericite, in aqueous solution, Water Sci. Technol., 79(10), 1922-1933 (2019).   DOI
18 N. Supanchaiyamat, K. Jetsrisuparb, J. T. N. Knijneburg, D. C. W. Tsang, and A. J. Hunt, Lignin materials for adsorption: Current trend, perspectives and opportunities, Bioresour. Technol., 272, 570-581 (2019).   DOI
19 M. S. Hasanin and A. H. Hashem, Eco-friendly, economic fungal universal medium from watermelon peel waste, J. Microbiol. Methods, 168, 105802 (2020).   DOI
20 C. Bhattacharjee, S. Dutta, and V. K. Saxena, A review on biosorptive removal of dyes and heavy metals from wastewater using watermelon rind as biosorbent, Environ. Adv., 2, 100007 (2020).   DOI
21 A. H. Jawad, R. Razuan, J. N. Appaturi, and L. D. Wilson, Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind prepared via one-step liquid phase H2SO4 activation, Surf. Interfaces, 16, 76-84 (2019).   DOI
22 Y. Dai, Q. Sun, W. Wang, L. Lu, M. Liu, J. Li, S. Yang, Y. Sun, K. Zhang, J. Xu, W. Zheng, Z. Hu, Y. Yang, Y. Gao, Y. Chen, X. Zhang, F. Gao, and Y. Zhang, Utilization of agricultural waste as adsorbent for the removal of contminants: A review, Chemosphere, 211, 235-253 (2018).   DOI
23 J. Li, H. Li, Z. Yuan, J. Fang, L. Chang, H. Zhang, and C. Li, Role of sulfonation in lignin-based material for adsorption removal of cationic dyes, Int. J. Biol. Macromol., 135, 1171-1181 (2019).   DOI
24 H. J. Choi, S. W. Yu, and K. H. Kim, Efficient use of Mg-modified zeolite in the treatment of aqueous solution contaminated with heavy metal toxic ions, J. Taiwan Inst. Chem. Eng., 63, 482-489 (2016).   DOI
25 A. H. Jawad, S. Mohammed, M. S. Mastuli, and M. F. B. Abdullah, Carbonization of corn (Zea mays) cob agricultural residue by one-step activation with sulfuric acid for methylene blue adsorption, Desalin. Water Treat., 118, 342-351 (2018).   DOI
26 A. H. Jawad, R. A. Rashid, M. A. M. Ishak, and L. D. Wilson, Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: kinetic, equilibrium and thermodynamic studies, Desalin. Water Treat., 57, 25194-25206 (2016).   DOI
27 G. A. O. Weijue, J. P. W. Inwood, and P. Fatehi, Sulfonation of hydroxy methylated lignin and its application, J. Bioresour. Bioprod., 4(2), 80-88 (2019).   DOI
28 S. Sabar, H. Abdul Aziz, N. H. Yusof, S. Subramaniam, K. Y. Food, L. D. Wilsone, and H. K. Lee, Preparation of sulfonated chitosan for enhanced adsorption of methylene blue from aqueous solution, React. Funct. Polym., 151, 104584 (2020).   DOI
29 M. Furtmair, J. Timm, and R. Marschall, Sulfonation of porous materials and their proton conductivity, Microporous Mesoporous Mater., 312, 110745 (2021).   DOI
30 K. F. L. Hagesteijn, S. Jiang, and B. P. Ladewig, A review of the synthesis and characterization of anion exchange membranes, J. Mater. Sci., 53, 11131-11150 (2018).   DOI
31 S. Y. Lee and H. J. Choi, Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution, J. Environ. Manag., 209, 382-392 (2018).   DOI
32 O. Uner, U. Gecgel, and Y. Bayrak, Adsorption of methylene blue by an efficient activated carbon prepared from Citrullus lanatus rind: Kinetic, isotherm, thermodynamic, and mechanism analysis, Water Air Soil Pollut., 227(7), 247 (2016).   DOI