DOI QR코드

DOI QR Code

Optimization of Preparation Conditions of Vanadium-Based Catalyst for Room Temperature Oxidation of Hydrogen Sulfide

황화수소 상온 산화를 위한 바나듐계 촉매의 제조 조건 최적화 연구

  • Kang, Hyerin (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Lee, Ye Hwan (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Kim, Sung Chul (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Chang, Soon Woong (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Kim, Sung Su (Department of Environmental Energy Engineering, Kyonggi University)
  • 강혜린 (경기대학교 일반대학원 환경에너지공학과) ;
  • 이예환 (경기대학교 일반대학원 환경에너지공학과) ;
  • 김성철 (경기대학교 환경에너지공학과) ;
  • 장순웅 (경기대학교 환경에너지공학과) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Received : 2021.04.05
  • Accepted : 2021.05.15
  • Published : 2021.06.10

Abstract

In this study, the preparation conditions for a TiO2-based vanadium-based catalyst for oxidizing hydrogen sulfide at room temperature were optimized. Four types of commercial TiO2 were used as a catalyst support and the performance evaluation of hydrogen sulfide oxidation at room temperature of V/TiO2 by varying vanadium contents prepared using the impregnation method was performed. Among the types of TiO2 tested, it was confirmed that the catalyst with the vanadium content of 5% and based on TiO2(A) has the best hydrogen sulfide conversion rate of 58%. By comparing the physical and chemical properties of the catalyst, the specific surface area of the support and the species of dominant vanadium are the major factor in catalyst performance. In order to confirm the regeneration characteristics of the catalyst with reduced activity, heat treatment was performed at 400 ℃ for 2 h, and the amount of hydrogen sulfide oxidation decreased by 10% due to the partial deposition of sulfur in the regenerated catalyst, but it was confirmed that the initial performance was similar.

본 연구에서는 황화수소를 상온에서 산화시키기 위한 TiO2 기반 바나듐계 촉매의 제조 조건을 최적화하였다. 촉매의 지지체로써 4종의 상용 TiO2를 선정하였으며, 함침법을 이용하여 제조된 다양한 바나듐 함량별 V/TiO2의 황화수소 상온 산화 성능 평가를 수행하였다. 선정된 TiO2 중 TiO2(A)를 기반으로 하며 바나듐(V) 함량이 5%인 촉매의 황화수소 전환율이 58%로 가장 우수한 것을 확인하였으며, 촉매의 물리·화학적 특성을 비교함으로써 지지체의 비표면적과 우점하는 바나듐의 종이 촉매 성능의 주요인자임을 도출하였다. 활성이 저하된 촉매의 재생 특성을 확인하기 위해 400 ℃에서 2 h 동안 열처리하였으며, 재생된 촉매에 황이 일부 침적되어 황화수소 산화량이 10% 감소하였으나 초기 성능은 유사하게 나타나는 것을 확인하였다.

Keywords

Acknowledgement

본 연구는 환경산업기술원의 녹색혁신기업 연구개발사업(202000-3160002)의 일환으로 수행되었습니다.

References

  1. B. C. Ko, J. K. Lee, Y. S. Lee, M. G. Lee, and S. K. Kam, A study on odor emission characteristics of domestic sewage treatment facilities using composite odor concentration and hydrogen sulfide concentration, J. Environ. Sci. Int., 21, 1379-1388 (2009). https://doi.org/10.5322/JES.2012.21.11.1379
  2. D.-S. Kim, H.-S. Lim, and D.-H. Kim, A study of accident cases by hydrogen sulfide poisoning in a fecal storage tank of a waste disposal ship, Dongguk. J. Med., 7, 147-155 (2000).
  3. S. Y. Choi, D. H. Han, and S. S. Kim, A study on the optimization of activated carbon adsorbent preparation condition and evaluation of application supporting of K-Fe-Li ternary metal ions for improving adsorption capacity of hydrogen sulfide (H2S), Clean Technol., 25, 189-197 (2019).
  4. L. T. Popoola, A. S. Grema, G. K. Latinwo, B. Gutti, and A. S. Balogun, Corrosion problems during oil and gas production and its mitigation, Int. J. Ind. Chem., 4(35), 1-15 (2013). https://doi.org/10.1186/2228-5547-4-1
  5. J. Lee and D. Kim, Application of fungal cultivation in biofiltration systems for hydrogen sulfide removal, J. Odor Indoor Environ., 17, 215-223 (2018). https://doi.org/10.15250/joie.2018.17.3.215
  6. H. Eom, Y. Jang, S. Y. Choi, S. M. Lee, and S. S. Kim, Application and regeneration of honeycomb-type catalysts for the selective catalytic oxidation of H2S to sulfur from landfill gas, Appl. Catal. A-Gen., 590, 117365 (2020). https://doi.org/10.1016/j.apcata.2019.117365
  7. H. T. Kim, J. H. Kim, and H. P. Lee, The development of SiC-supported iron oxide sorbent for H2S removal, J. Korean Ind. Eng. Chem., 15, 549-557 (2004).
  8. S. H. Ryu, Y. Seo, J. Park, S. D. Kim, and S. S. Park, Adsorption characteristics of hydrogen sulfide on iron hydroxide-based adsorbent, J. Korean Soc. Waste Manag., 34, 468-473 (2017). https://doi.org/10.9786/kswm.2017.34.5.468
  9. J.-G. Nam, A study of NOx performance for Cu-chabazite SCR catalysts by sulfur poisoning and desulfation, J. Korean Soc. Mar. Environ., 37, 855-861 (2013).
  10. N. M. Kinnunen, K. Kallinen, T. Maunula, M. Keenan, and M. Suvanto, Fundamentals of sulfate species in methane combustion catalyst operation and regeneration - A simulated exhaust gas study, Catalysts, 9, 417-426 (2019). https://doi.org/10.3390/catal9050417
  11. H. Eom, S. M. Lee, H. Kang, Y. H. Lee, and S. S. Kim, Effect of VOx surface density and structure on VOx/TiO2 catalysts for H2S selective oxidation reaction, J. Ind. Eng. Chem., 92, 252-262 (2020). https://doi.org/10.1016/j.jiec.2020.09.013
  12. U. Diebold, The surface science of titanium dioxide, Surf. Sci., 48 53-229 (2003). https://doi.org/10.1016/S0167-5729(02)00100-0
  13. B. S. Shirke, P. V. Korake, P. P. Hankare, S. R. Bamane, and K. M. Garadkar, Synthesis and characterization of pure anatase TiO2 nanoparticles, J. Mater. Sci. Mater. Electron., 22, 821-824 (2011). https://doi.org/10.1007/s10854-010-0218-4
  14. X. Meng, H. Huang, H. Weng, and L. Shi, Ni/ZnO-based adsorbents supported on Al2O3, SiO2, TiO2, ZrO2: A comparison for desulfurization of model gasoline by reactive adsorption, Bull. Korean Chem. Soc., 33, 3213-3217 (2012). https://doi.org/10.5012/bkcs.2012.33.10.3213
  15. R. D. Shannon and J. A. Pask, Kinetics of the anatase-rutile transformation, J. Am. Ceram. Soc., 48, 391-398 (1965). https://doi.org/10.1111/j.1151-2916.1965.tb14774.x
  16. J. M. Won, K. H. Park, and S. C. Hong, Effect of vanadium surface density of SCR catalyst on reaction activity and SO2 durability, Appl. Chem. Eng., 28, 158-164 (2017).
  17. J. Kim, J. Jeon, E. Kim, S. Na, and H.-S. Han, Development of sulfur-tolerant diesel oxidation catalysts, KSAE, 5, 263-266 (2014).
  18. H. Eom, Y. Jang, S. Y. Choi, S. M. Lee, and S. S. Kim, Application and regeneration of honeycomb-type catalysts for the selective catalytic oxidation of H2S to sulfur from landfill gas, Appl. Catal. A-Gen., 590, 117365 (2020). https://doi.org/10.1016/j.apcata.2019.117365