DOI QR코드

DOI QR Code

Enhanced Primary Production in Response to Freshwater Inflow in the Nakdong River Estuary: Characteristics of land-Ocean Coupling (LOC)

낙동강 하구에서 담수 유입에 따른 연안 클로로필-a 증가 : 낙동강의 육상-해양 coupling 패턴 분석

  • KIM, SUHYUN (Department of Oceanography, Pusan National University) ;
  • AN, SOONMO (Department of Oceanography, Pusan National University)
  • Received : 2021.03.03
  • Accepted : 2021.04.26
  • Published : 2021.05.31

Abstract

Since terrestrial input plays a major role in coastal primary production, an understanding of land-ocean coupling (LOC) is key to understand coastal ecological changes. In this study, the LOC has been classified into three stages (i.e., the baseflow, plume event and residual flow). In order to characterize its pattern in Nakdong River estuary, multi-platform data were obtained from remote sensing (geostationary ocean color image (GOCI)), in-situ measurement (marine environment information system (MEIS)), on-site measurement (discharge data and meteorological data). The MEIS data were grouped into three stages of LOC using principal component analysis (PCA), and the LOC (2013 ~ 2018) was examined at each stage using multi-platform data. In the Nakdong River estuary, the maximum value of chlorophyll-a (chl-a) was unexpectedly appeared during the plume event. It is assumed that there was no significant increase in turbidity, expected during the typical plume event, together with the weak flushing effect, caused the enhanced phytoplankton growth. Compared with other estuaries, LOC is common in estuaries affected by freshwater inflow, but LOC has different pattern depending on the size of the plume. While estuaries that form small plumes of about 10 km (low freshwater discharge and weak flushing effect) observed high chl-a in the plume event because the phytoplankton can response to the increased nutrient more rapidly. estuaries that form large plumes of more than 100 km est (high freshwater discharge and strong flushing effect) follow the typical LOC pattern conceptualized in this study (high chl-a in the residual flow).

담수를 통해 유입되는 육상 기원 물질은 연안 일차 생산을 제어하는 주요 요소이므로 육상-해양 coupling을 파악하는 것은 연안 생태 변화를 이해하는데 중요하다. 본 논문에서는 육상-해양 coupling 양상을 시간에 따라 세 단계(Base flow, Plume event, Residual flow)로 구분하여 개념화하였고, 낙동강 하구에서 각 양상의 출현을 확인하기위해 다양한 플랫폼에서 측정된 자료를 사용하여 분석하였다. 사용된 자료는 원격 탐사 측정 자료(Geostationary Ocean Color Image; GOCI), 현장 실측 자료(Marine Environment Information System; MEIS), 연속 측정 자료(유량 자료, 기상 자료)로 구분될 수 있다. 주성분분석을 통해 MEIS 자료를 육상-해양 coupling의 세 단계로 구분하였고, 이 구분을 2013-2018년 동안의 여타 자료에 적용하여 단기간 육상-해양 coupling 양상을 살펴보았다. 낙동강 하구에서는 예상과는 달리 Plume event때 Chlorophyll-a (Chl-a) 최대값이 나타났다. 이는 담수 증가에도 탁도 증가는 크지 않았고, 플러싱 효과도 약해 식물플랑크톤이 증가 할 수 있는 여건이 조성되었기 때문으로 분석되었다. 육상-해양 coupling을 기반으로 여러 하구들과 비교해보았을 때 육상-해양 coupling은 담수 유입에 영향을 받는 하구에서 흔한 현상이나 하구에서 형성되는 플룸 크기에 따라 육상-해양 coupling이 다르게 나타났다. 낙동강 하구처럼 작은 플룸(~10 km 규모) 이 형성되는 하구에서는 식물플랑크톤의 즉각적인 반응으로 인해 Plume event 단계에 Chl-a 최댓값이 나타나는 반면, ~100 km 이상의 큰 플룸이 형성되는 하구(담수 배출이 크고, 플러싱이 강한 곳)에서는 본 연구에서 개념화한 육상-해양 coupling 양상(Residual flow 때 Chl-a 최대)을 따르는 것으로 나타났다.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. Carreon-Martinez, L.B., K.W. Wellband, T.B. Johnson, S.A. Ludsin and D.D. Heath, 2014. Novel molecular approach demonstrates that turbid river plumes reduce predation mortality on larval fish. Molecular Ecology, 23(21): 5366-5377. https://doi.org/10.1111/mec.12927
  2. Cravo, A., M. Madureira, H. Felicia, F. Rita and M.J. Bebianno, 2006. Impact of outflow from the Guadiana River on the distribution of suspended particulate matter and nutrients in the adjacent coastal zone. Estuarine, Coastal and Shelf Science, 70(1-2): 63-75. https://doi.org/10.1016/j.ecss.2006.05.034
  3. Dagg, M.J. and G.A. Breed, 2003. Biological effects of Mississippi River nitrogen on the northern Gulf of Mexico-a review and synthesis. Journal of Marine Systems, 43(3-4): 133-152. https://doi.org/10.1016/j.jmarsys.2003.09.002
  4. Dortch, Q. and T.E. Whitledge, 1992. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions?. Continental Shelf Research, 12(11): 1293-1309. https://doi.org/10.1016/0278-4343(92)90065-R
  5. Fisher, T.R. L.W. Harding Jr, D.W. Stanley and L.G. Ward, 1988. Phytoplankton, nutrients, and turbidity in the Chesapeake, Delaware, and Hudson estuaries. Estuarine, Coastal and Shelf Science, 27(1): 61-93. https://doi.org/10.1016/0272-7714(88)90032-7
  6. Gaston, T.F., T.A. Schlacher and R.M. Connolly, 2006. Flood discharges of a small river into open coastal waters: plume traits and material fate. Estuarine, Coastal and Shelf Science, 69(1-2): 4-9. https://doi.org/10.1016/j.ecss.2006.03.015
  7. Green, R.E., T.S. Bianchi, M.J. Dagg, N.D. Walker and G.A. Breed, 2006. An organic carbon budget for the Mississippi River turbidity plume and plume contributions to air-sea CO2 fluxes and bottom water hypoxia. Estuaries and Coasts, 29(4): 579-597. https://doi.org/10.1007/bf02784284
  8. Grimes, C.B. and J.H. Finucane, 1991. Spatial distribution and abundance of larval and juvenile fish, chlorophyll and macrozooplankton around the Mississippi River discharge plume, and the role of the plume in fish recruitment. Marine ecology progress series. Oldendorf, 75(2): 109-119. https://doi.org/10.3354/meps075109
  9. Grimes, C.B. and M.J. Kingsford, 1996. How do riverine plumes of different sizes influence fish larvae: do they enhance recruitment?. Marine and Freshwater Research, 47(2): 191-208. https://doi.org/10.1071/MF9960191
  10. Huret, M., I. Dadou, F. Dumas, P. Lazure and V. Garcon, 2005. Coupling physical and biogeochemical processes in the Rio de la Plata plume. Continental Shelf Research, 25(5-6): 629-653. https://doi.org/10.1016/j.csr.2004.10.003
  11. Jang, S.T. and K.C. Kim, 2006. Change of oceanographic environment in the Nakdong Estuary. The Sea, 11(1): 11-20.
  12. Kim, S. and S.H. Youn, 2019. Effect of Freshwater Discharge on the Nakdong River Estuary: Mooring Observations of Water Temperature and Salinity. Journal of the Korean Society of Marine Environment and Safety, 25(1): 89-95. https://doi.org/10.7837/kosomes.2019.25.1.089
  13. Liu, H. and M. Dagg, 2003. Interactions between nutrients, phytoplankton growth, and micro-and mesozooplankton grazing in the plume of the Mississippi River. Marine Ecology Progress Series, 258: 31-42. https://doi.org/10.3354/meps258031
  14. Liu, H., M.J. Dagg, C.J. Wu and K.P. Chiang, 2005. Mesozooplankton consumption of microplankton in the Mississippi River plume, with special emphasis on planktonic ciliates. Marine Ecology Progress Series, 286: 133-144. https://doi.org/10.3354/meps286133
  15. Lohrenz, S.E., G.L. Fahnenstiel, D.G. Redalje, G.A. Lang, M.J. Dagg, T.E. Whitledge and Q. Dortch, 1999. Nutrients, irradiance, and mixing as factors regulating primary production in coastal waters impacted by the Mississippi River plume. Continental Shelf Research, 19(9): 1113-1141. https://doi.org/10.1016/S0278-4343(99)00012-6
  16. Lohrenz, S.E., G.L. Fahnenstiel, D.G. Redalje, G.A. Lang, X. Chen and M.J. Dagg, 1997. Variations in primary production of northern Gulf of Mexico continental shelf waters linked to nutrient inputs from the Mississippi River. Marine Ecology Progress Series, 155: 45-54. https://doi.org/10.3354/meps155045
  17. Lohrenz, S.E., M.J. Dagg and T.E. Whitledge, 1990. Enhanced primary production at the plume/oceanic interface of the Mississippi River. Continental shelf research, 10(7): 639-664. https://doi.org/10.1016/0278-4343(90)90043-L
  18. Mallin, M.A., H.W. Paerl, J. Rudek and P.W. Bates, 1993. Regulation of estuarine primary production by watershed rainfall and river flow. Marine Ecology-Progress Series, 93: 199-199. https://doi.org/10.3354/meps093199
  19. Moon, J.E., Y.H. Ahn, J.H. Ryu and P. Shanmugam, 2010. Development of ocean environmental algorithms for Geostationary Ocean Color Imager (GOCI). Korean Journal of Remote Sensing, 26(2): 189-207. https://doi.org/10.7780/KJRS.2010.26.2.189
  20. Morris, A.W., J.I. Allen, R.J.M. Howland and R.G. Wood, 1995. The estuary plume zone: source or sink for land-derived nutrient discharges?. Estuarine, Coastal and Shelf Science, 40(4): 387-402. https://doi.org/10.1006/ecss.1995.0027
  21. Park, S., J. Lee, J.U. Choi, N. Heo and S. An, 2016. Study on the long-term changes in water quality and benthic ecology and evaluation on effect of the barrage in Nakdong River estuary. Journal of wetlands research, 18(1): 58-67. https://doi.org/10.17663/JWR.2016.18.1.058
  22. Santos, M.L., K. Muniz, B. Barros-Neto and M. Araujo, 2008. Nutrient and phytoplankton biomass in the Amazon River shelf waters. Anais da Academia Brasileira de Ciencias, 80(4): 703-717. https://doi.org/10.1590/S0001-37652008000400011
  23. Schlacher, T.A., A.J. Skillington, R.M. Connolly, W. Robinson and T.F. Gaston, 2008. Coupling between marine plankton and freshwater flow in the plumes off a small estuary. International Review of Hydrobiology, 93(6): 641-658. https://doi.org/10.1002/iroh.200711050
  24. Smith Jr, W.O. and D.J. Demaster, 1996. Phytoplankton biomass and productivity in the Amazon River plume: correlation with seasonal river discharge. Continental Shelf Research, 16(3): 291-319. https://doi.org/10.1016/0278-4343(95)00007-N
  25. Smith, W.O. and G.J. Russell, 1995. Phytoplankton biomass and nutrient distributions in the Amazon River plume: environmental correlates. Geo-Marine Letters, 15(3): 195-198. https://doi.org/10.1007/BF01204463
  26. Song, J.I., B.I. Yoon, J.W. Kim, C.W. Lim and S.B. Woo, 2014. Spatial and Temporal Variability of Residual Current and Salinity Distribution according to Freshwater Discharge during Monsoon in Nakdong River Estuary. Journal of Korean Society of Coastal and Ocean Engineers, 26(3): 184-195. https://doi.org/10.9765/KSCOE.2014.26.3.184
  27. Yang, C.S., S.S. Bae, H.J. Han, Y.H. Ahn, J.H. Ryu, T.H. Han and H.R. Yoo, (2010). Introduction of acquisition system, processing system and distributing service for Geostationary Ocean Color Imager (GOCI) data. Korean Journal of Remote Sensing, 26(2): 263-275. https://doi.org/10.7780/KJRS.2010.26.2.263