DOI QR코드

DOI QR Code

Rates and Controls of Organic Matter Mineralization and Benthic Nutrient Release in the Coastal Sediment Near Lake Shihwa

시화호 인근 연안 퇴적물의 유기물 분해 특성, 저층 영양염 용출 및 조절요인

  • SHIN, JAE-HYUK (Geosystem Research Corporation) ;
  • AN, SUNG-UK (Depertment of Marine Sciences and Convergence Engineering, Hanyang University) ;
  • CHOI, JAE-HOON (Geosystem Research Corporation) ;
  • LEE, HYO-JIN (Geosystem Research Corporation) ;
  • WOO, SEUNG-BUHM (Department of Oceanography, Inha University) ;
  • HYUN, JUNG-HO (Depertment of Marine Sciences and Convergence Engineering, Hanyang University) ;
  • KIM, SUNG-HAN (Marine Environmental Research Center, Korea Institute of Ocean Science & Technology)
  • 신재혁 ((주)지오시스템리서치) ;
  • 안성욱 (한양대학교 해양융합공학과) ;
  • 최재훈 ((주)지오시스템리서치) ;
  • 이효진 ((주)지오시스템리서치) ;
  • 우승범 (인하대학교 해양과학과) ;
  • 현정호 (한양대학교 해양융합공학과) ;
  • 김성한 (한국해양과학기술원 해양환경연구센터)
  • Received : 2021.02.01
  • Accepted : 2021.05.06
  • Published : 2021.05.31

Abstract

We investigated geochemical constituents of pore-water and sediment, rates of organic carbon (Corg) oxidation and sulfate reduction (SR), and benthic nutrient flux (BNF) to elucidate characteristic of Corg oxidation and its control in the coastal area near Lake Shihwa. The study sites were selected in the vicinity of Soraepogu (E0), Songdo tidalflat (E1) and Oido dock (E3) and in front of floodgate Shihwa tidal plant (E5). The Corg contents in the sediments and concentrations of ammonium and phosphate in pore water exhibited the highest value at EO, and gradually decreased toward the outer sea (E1, E3, E5). Rates of anaerobic Corg oxidation (260.6 mmol C m-2 d-1) and SR (91.4 mmol S m-2 d-1) at E0 were 4-9 and 6-54 times higher than at the site of outer sea (E1, E3, E5). Rates of SR at E3 and E5 accounted for 11-23% of anaerobic Corg oxidation, whereas it comprised 47-70% of anaerobic Corg oxidation at E0 and E1. Rates of Corg oxidation and SR showed a highly positive correlation with the concentration of dissolved organic carbon (r2 = 0.795 and 0.777, respectively). The BNF at E0, E1, and E3 accounted for 120-510% and 26-178%, respectively, of the N and P required for primary production in the water column. Overall results suggest that the Corg oxidation in the sediment controlled by concentration of dissolved organic carbon in the pore water and the excessive Corg oxidation stimulates the benthic nutrient flux, which may cause a phytoplankton bloom in the water column.

시화호 인근 연안 퇴적물에서 유기물 분해 특성, 퇴적물로부터의 영양염 용출 및 주요 조절요인을 파악하기 위해 공극수와 퇴적물 내 지화학 성분, 혐기성 유기물 분해율, 황산염 환원율 및 저층 영양염 용출률을 측정하였다. 연구정점은 소래포구 인근 정점(E0), 송도갯벌 정점(E1), 오이도 선착장 부근 정점(E3), 시화 조력발전소 수문 앞 정점(E5)으로 선정하였다. 유기탄소와 공극수 내 암모니아, 인산염 농도는 정점 E0에서 가장 높게 나타났으며, 외측 해역(정점 E1, E3, E5)으로 갈수록 점진적으로 감소하였다. 혐기성 유기물 분해율과 황산염 환원율은 정점 E0에서 각각 260.6 mmol C m-2 d-1와 91.4 mmol S m-2 d-1로 외측 정점들보다 각각 4-9배, 6-54배 높게 나타났다. 혐기성 유기물 분해에서 황산염 환원이 차지하는 비율은 정점 E3, E5에서 11-23%로 미미한 것으로 나타났으나, 정점 E0, E1에서는 47-70%로 황산염 환원에 의해 혐기성 유기물 분해가 주도되는 것으로 나타났다. 또한, 혐기성 유기물 분해율과 황산염 환원율은 용존 유기탄소와 상관성이 매우 높은 것으로 나타났다(r2 = 0.795, 0.777). 한편, 정점 E0, E1, E3에서 퇴적물로부터 용출된 무기질소와 무기인은 각각 일차생산자가 요구하는 무기질소와 무기인의 120-510%와 26-178%를 공급하는 것으로 나타났다. 이상의 결과들은, 시화호 인근 연안 퇴적물 내 유기물 분해는 이용 가능한 용존 유기탄소의 공급에 의해 조절되고 있으며, 과도한 유기물 분해는 저층 영양염 용출을 촉진시켜 부영양화를 야기할 수 있음을 의미한다.

Keywords

Acknowledgement

본 연구는 2014년 해양수산부 재원으로 한국해양과학기술진흥원(경기씨그랜트사업: 20170362, 장기해양생태계연구: 환경변화와 생태계 반응)과 한국해양과학기술원(PG52161)의 지원을 받아 수행되었음.

References

  1. Alongi, D.M., 1995. Decomposition and recycling of organic matter in mud of the Gulf of Papua, Northern Coral Sea. Cont. Shelf Res., 15: 1319-1337. https://doi.org/10.1016/0278-4343(94)00087-4
  2. Alperin, M.J., C.S. Martens, D.B. Albert, I.B. Suayah, L.K. Benninger, N.E. Blair and R.A. Jahnke, 1999. Benthic fluxes and pore water concentration profiles of dissolved organic carbon in sediments from the North Carolina continental slope. Geochim. Cosmochim. Acta., 63: 427-448. https://doi.org/10.1016/S0016-7037(99)00032-0
  3. Alperin, M.J., D.B. Albert and C.S. Martens, 1994. Seasonal variations in production and consumption rates of dissolved organic carbon in an organic-rich coastal sediment. Geochim. Cosmochim. Acta., 58: 4909-4930. https://doi.org/10.1016/0016-7037(94)90221-6
  4. Boynton, W.R. and W.M. Kemp, 1985. Nutrient regeneration and oxygen consumption by sedimets along an estuarine salinity gradient. Mar. Ecol. Prog. Ser., 23: 45-55. https://doi.org/10.3354/meps023045
  5. Canfield, D.E., B. Thamdrup and E. Kristensen, 2005. Aquatic geomicrobiology. Elsevier Academic Press, San Diego, Ca, USA.
  6. Choi, M., E.T. Furlong, H.-B. Moon, J. Yu and H.-G. Choi, 2011. Contamination of nonylphenolic compounds in creek water, wastewater treatment plant effluents, and sediments from Lake Shihwa and vicinity, Korea: Comparison with fecal pollution. Chemosphere, 85: 1406-1413. https://doi.org/10.1016/j.chemosphere.2011.08.016
  7. Cline, J.D., 1969. Spectrophotometric determinations of hydrogen sulfide in natural waters. Limnol. Oceanogr., 14: 454-458. https://doi.org/10.4319/lo.1969.14.3.0454
  8. Colijn, F. and L. Edler, 2002. Working manual and supporting papers on the use of a standardized incubator-technique in primary production measurements Hydro-Bios Apparatebau GmbH.
  9. Daiz, R.J. and R. Rosenberg, 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. Annu. Rev., 33: 245-303.
  10. Fossing, H. and B.B. Jorgensen, 1989. Measurement of bacterial sulfate reduction in sediments: Evaluation of a single-step chromium reduction method. Biogeochem., 8: 205-222. https://doi.org/10.1007/BF00002889
  11. Gray, J.S., R.S. Wu and Y.Y. Or, 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Mar. Ecol. Prog. Ser., 238: 249-279. https://doi.org/10.3354/meps238249
  12. Gyeonggi Research Institute (GRI), 2007. Analysis and utilization of west coast reclamation. 2007 Report of Gyeonggi Research Institute.
  13. Hall, P.O.J. and R.C. Aller, 1992. Rapid small-volume, flow injection analysis for CO2 and NH4+ in marine and fresh waters. Limnol. Oceanogr., 37: 1113-1119. https://doi.org/10.4319/lo.1992.37.5.1113
  14. Han, M.W and Y.C. Park, 1999. The Development of Anoxia in the Artificial Lake Shihwa, Korea, as a Consequence of Intertidal Reclamation. Mar. Pollut. Bull., 38: 1194-1199. https://doi.org/10.1016/S0025-326X(99)00161-7
  15. Henrichs, S.M., 1993. Early diagenesis of organic matter: The dynamics (rates) of cycling of organic compounds. In: M. Engel and S. Macko, editors, Organic geochemistry, pp. 101-117.
  16. Holmer, M., 1996. Composition and fate of dissolved organic carbon derived from phytoplankton detritus in coastal marine sediments. Mar. Ecol. Prog. Ser., 141: 217-228 https://doi.org/10.3354/meps141217
  17. Hyun, J.-H., H.K. Lee and K.K. Kwon, 2003. Sulfate reduction in the marine environments: Its controlling factors and relative significance in mineralization of organic matter. J. Kor. Soc. Oceanogr., 8: 210-224.
  18. Hyun, J.-H., J.-S. Mok, H.-Y. Cho, S.-H. Kim, K.S. Lee and J.E. Kostka, 2009. Rapid organic matter mineralization coupled to iron cycling in intertidal mud flats of the Han River estuary, Yellow Sea. Biogeochem., 92: 231-245. https://doi.org/10.1007/s10533-009-9287-y
  19. Hyun, J.-H., J.S. Mok, H.Y. Cho, B.C. Cho and J.K. Choi, 2004. Anaerobic mineralization of organic matter and sulfate reduction in summer at Ganghwa intertidal flat, Korea. J. Kor. Wetlands Soc., 6: 117-132.
  20. Hyun, J.-H., S.-H. Kim, J.-S. Mok, J.-S. Lee, S.-U. An, W.-C. Lee, 2013. Impacts of long-line aquaculture of Pacific oyster (Crassostera gigias) on sulfate reduction and diffusive nutrient flux in the costal sediments of Jinhae-Tongyeong, Korea. Mar. Pollut. Bull., 74: 187-198. https://doi.org/10.1016/j.marpolbul.2013.07.004
  21. Jang, J.-I., I.-S. Han, K.-T. Kim and K.-T. Ra, 2011. Characteristics of water quality in the Shihwa Lake and outer sea. J. Korean Soc. Mar. Environ. Saf., 17: 105-121. https://doi.org/10.7837/kosomes.2011.17.2.105
  22. Jin, G., S.-I. Onodera, A. Amano, M. Saito, Y. Shimizu, 2013. Effects of dam construction on sediment phosphorus variation in a semi-enclosed bay of the Seto Inland Sea, Japan. Estuar. Coast. Shelf Sci., 135: 191-200. https://doi.org/10.1016/j.ecss.2013.10.009
  23. Jorgensen, B.B., 1978. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments, I. Measurement with radiotracer techniques. Geomicrobiol. J., 1: 11-27. https://doi.org/10.1080/01490457809377721
  24. Jung, R.-H., M.K. Choi, S.-P. Yoon, W.-C. Lee and H.-G. Choi, 2012. Polychaete community structure from inshore and offshore of Lake Shihwa (Korea) in March, 2008. Kor, J. Fish. Aquat. Sci., 45: 56-64. https://doi.org/10.5657/KFAS.2012.0056
  25. Korea Environment Institute (KEI), 2005. A study on effective mitigation measures for environmental impacts of oceanic reclamation projects. 2005 Report of Korea Environment Institute.
  26. Kim, S.-H., J.S. Lee, J.-H. Hyun, 2017. Extremely high sulfate reduction, sediment oxygen demand and benthic nutrient flux associated with a large-scale artificial dyke and its implication to benthic-pelagic coupling in the Yeongsan River estuary, Yellow Sea. Mar. Pollut. Bull., 120: 126-135. https://doi.org/10.1016/j.marpolbul.2017.04.047
  27. Kim, Y.-J. and S.-K. Kwon, 2004. Dynamics of the community of phytoplankton and periphytic algae on reed in the Shihwa constructed wetland. Korean J. Environ. Agric., 23: 59-67. https://doi.org/10.5338/KJEA.2004.23.1.059
  28. Koh, C.-H., 2001. The Korean tidal flat: Environment, biology and human, Seoul National University Press.
  29. Kostka, J.E., A. Roychoudhury and P.V. Cappellen, 2002b. Rates and comtrols of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sediment. Biogechem., 60: 49-76. https://doi.org/10.1023/A:1016525216426
  30. Kostka, J.E., B. Gribsholt, E. Petrie, D. Dalton, H. Skelton and E. Kristensen, 2002a. The rates and pathways of carbon oxidation in bioturbated saltmarsh sediments. Limnol. Oceanogr., 47: 230-240. https://doi.org/10.4319/lo.2002.47.1.0230
  31. Korea Water Resources Corporation (KWRC), 1998. A study on the environmental impacts in open sea of Lake Shihwa. 1998 Report of Korea Water Resources Corporation.
  32. Korea Water Resources Corporation (KWRC), 2001. A study on long-term of environmental impacts in open sea of Lake Shihwa. 2001 Report of Korea Water Resources Corporation.
  33. Korea Water Resources Corporation (KWRC), 2015. Analysis of surface current variation observed with HF-radar in the coastal water off the Sihwa tidal power plant. 2015 Report of Korea Water Resources Corporation.
  34. Lee, J.-H., J.-S. Yi, B.-S. Kim, C.-B. Lee and C.-H. Koh, 1998. Characteristics of metal distribution in the sediment in Kyeonggi Bay, Korea. J. Kor. Soc. Oceanogr., 3: 103-111.
  35. Lee, J.S., K.H. Kim, J. Shim, J.H. Han, Y.H. Choi and B.-J. Khang, 2012. Massive sedimentation of fine sediment with organic matter and enhanced benthic-pelagic coupling by an artificial dyke in semi-enclosed Chonsu Bay, Korea. Mar. Pollut. Bull., 64: 153-163. https://doi.org/10.1016/j.marpolbul.2011.09.033
  36. Matos, C.R.L., U. Mendoza, R. Diaz, M. Moreira, A.L. Belem, E. Metzger, A.S Albuquerque and W. Machado, 2016. Nutrient regeneration susceptibility under contrasting sedimentary conditions from the Rio de Janeiro coast, Brazil. Mar. Pollut. Bull., 108: 297-302. https://doi.org/10.1016/j.marpolbul.2016.04.046
  37. Ministry of Oceans and Fisheries (MOF), 1998. A study on environmental changes in Shihwa Lake (2nd year). 1998 Report of Ministry of Oceans and Fisheries.
  38. Ministry of Oceans and Fisheries (MOF), 2004. A development of biogeochemical techniques for assessing organic matter decomposition activities in tidal flat - a case study in tidal flats of Gyeonggi Bay. 2004 Report of Ministry of Oceans and Fisheries.
  39. Mortimer, R.J.G., M.D. Krom, P.G. Watson, P.E. Frickers, J.T. Davey and R.J. Clifton, 1998. Sediment-water exchange of nutrient in the intertidal zone of the Humber Estuary, UK. Mar. Pollut. Bull., 37: 261-279. https://doi.org/10.1016/S0025-326X(99)00053-3
  40. National Fisheries Research & Development Institute (NFRDI), 2013. Characteristics of the organic matter mineralization in the sediment of fish farm. 2013 Report of National Fisheries Research & Development Institute.
  41. Park, C. and S.-H. Huh, 1997. Ecological stability of the Shihwa Lake evaluated by zooplankton distribution in the Lake Shihwa and adjacent coastal area. J. Kor. Soc. Oceanogr., 2: 87-91.
  42. Park, J.K., E.S. Kim, K.T. Kim, S.R. Cho, T.Y. Song, J.K. Yoo, S.S. Kim and Y.C. Park, 2009. Characteristics in organic carbon distribution in the Seamangeum area during the construction of artificial sea dike, Korea. J. Korean Soc. Mar. Environ. Energy, 12: 75-83.
  43. Parsons, T.R., Y. Maita, C.M. Lalli, 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, p. 173.
  44. Ra, K.T., J.-K. Kim, E.-S. Kim, K.-T. Kim, J.-M. Lee and E.-Y. Kim, 2013. Vertical profiles and assessment of trace metals in sediment cores from outer sea of Lake Shihwa, Korea. J. Korean Soc. Mar. Environ. Energy, 16: 71-81. https://doi.org/10.7846/JKOSMEE.2013.16.2.71
  45. Shin, D.-H. and K.-H. Cho, 2001. Vegetation structure and distribution of exotic plants with geomorphology and disturbance in the riparian zone of Seunggi Stream, Incheon. J. Ecol. Environ., 24: 273-280.
  46. Steeman-Nielsen, E., 1952. The use of radio-active carbon (C14) for measuring organic production in the sea. ICES J. Mar. Sci., 18: 117-140. https://doi.org/10.1093/icesjms/18.2.117
  47. Stookey, L.L., 1970. Ferrozine-a new spectrophotometric reagent for iron. Anal. Chem., 42: 245-252. https://doi.org/10.1021/ac60289a016
  48. Sugimura, Y. and Y. Suzuki, 1988. A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Mar. Chem., 24: 105-131. https://doi.org/10.1016/0304-4203(88)90043-6