DOI QR코드

DOI QR Code

산성 전해질 기반의 전기 이중층 커패시터용 흑연 집전체의 전기화학적 안정성 평가

Evaluation of Electrochemical Stability of Graphite Current Collector for Electric Double Layer Capacitor Based on Acid Electrolyte

  • 박시진 (경상국립대학교 에너지공학과) ;
  • 안건형 (경상국립대학교 에너지공학과)
  • Park, Sijin (Department of Energy Engineering, Gyeongsang National University) ;
  • An, Geon-Hyoung (Department of Energy Engineering, Gyeongsang National University)
  • 투고 : 2021.04.01
  • 심사 : 2021.04.16
  • 발행 : 2021.05.27

초록

Owing to its low cost, easy fabrication process, and good ionic properties, aqueous supercapacitors are under strong consideration as next-generation energy storage devices. However, the limitation of the current collector is its poor electrochemical stability, leading to low energy storage performance. Therefore, a reasonable design of the current collector and the acidic electrolyte is a necessary, as well as interfacial engineering to enhance the electrochemical performance. In the present study, graphite foil, with excellent electrochemical stability and good electrical properties, is suggested as a current collector of aqueous supercapacitors. This strategy results in excellent electrochemical performance, including a high specific capacitance of 215 F g-1 at a current density of 0.1 A g-1, a superior high-rate performance (104 F g-1 at a current density of 20.0 A g-1), and a remarkable cycling stability of 98 % at a current density of 10.0 A g-1 after 9,000 cycles. The superior energy storage performance is mainly ascribed to the improved ionic diffusion ability during cycling.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020R1C1C1010611)

참고문헌

  1. M. A. Mustapa, O. B. Yaakob, Y. M. Ahmed, C.-K. Rheem, K. K. Koh and F. A. Adnan, Renewable Sustainable Energy Rev., 77, 43 (2017). https://doi.org/10.1016/j.rser.2017.03.110
  2. A. Subramani, M. Badruzzaman, J. Oppenheimer and J. G. Jacangelo, Water Res., 45, 1907 (2011). https://doi.org/10.1016/j.watres.2010.12.032
  3. N. L. Panwar, S. C. Kaushik and S. Kothari, Renewable Sustainable Energy Rev., 15, 1513 (2011). https://doi.org/10.1016/j.rser.2010.11.037
  4. Y. Cho, S. Pak, Y.-G. Lee, J. S. Hwang, P. Giraud, G.- H. An and S. Cha, Adv. Funct. Mater., 30, 1908479 (2020). https://doi.org/10.1002/adfm.201908479
  5. G.-H. An, J. Hong, S. Pak, Y. Cho, S. Lee, B. Hou and S. Cha, Adv. Energy Mater., 10, 1902981 (2020). https://doi.org/10.1002/aenm.201902981
  6. Y.-G. Lee and G.-H. An, ACS Appl. Mater. Interfaces, 12, 41342 (2020). https://doi.org/10.1021/acsami.0c10512
  7. G.-H. An, Appl. Surf. Sci., 530, 147220 (2020). https://doi.org/10.1016/j.apsusc.2020.147220
  8. P. Sharma and T. S. Bhatti, Energy Convers. Manag., 51, 2901-2912 (2010). https://doi.org/10.1016/j.enconman.2010.06.031
  9. Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li and L. Zhang, Int. J. Hydrogen Energy, 34, 4889 (2009). https://doi.org/10.1016/j.ijhydene.2009.04.005
  10. J. Park and G.-H. An, Appl. Surf. Sci., 549, 149326 (2021). https://doi.org/10.1016/j.apsusc.2021.149326
  11. J. Lee and G.-H. An, Appl. Surf. Sci., 539, 148290 (2021). https://doi.org/10.1016/j.apsusc.2020.148290
  12. B. Pal, S. Yang, S. Ramesh, V. Thangadurai and R. Jose, Nanoscale Adv., 1, 3807 (2019). https://doi.org/10.1039/C9NA00374F
  13. L. Zhang, S. Yang, J. Chang, D. Zhao, J. Wang, C. Yang and B. Cao, Front. Chem., 8, 413 (2020). https://doi.org/10.3389/fchem.2020.00413
  14. W. Ye, H. Wang, J. Ning, Y. Zhong and Y. Hu, J. Energy Chem., 57, 219 (2021). https://doi.org/10.1016/j.jechem.2020.09.016
  15. W. Qin, N. Zhou, C. Wu, M. Xie, H. Sun, Y. Guo and L. Pan, ACS Omega, 5, 3801 (2020). https://doi.org/10.1021/acsomega.9b04063
  16. X. Zang, C. Shen, M. Sanghadasa and L. Lin, ChemElectroChem, 6, 976 (2018).
  17. N. Blomquist, T. Wells, B. Andres, J. Backstrom, S. Forsberg and H. Olin, Sci. Rep., 7, 39836 (2017). https://doi.org/10.1038/srep39836
  18. G.-H. An, S. Cha and H.-J. Ahn, Appl. Surf. Sci., 478, 435 (2019). https://doi.org/10.1016/j.apsusc.2019.01.280
  19. M. Arvani, J. Keskinen, D. Lupo and M. Honkanen, J. Energy Storage, 29, 101384 (2020). https://doi.org/10.1016/j.est.2020.101384
  20. L. Liu, H. Zhao and Y. Lei, Small Methods, 3, 1800341 (2018).
  21. G.-H. An and H.-J. Ahn, Appl. Surf. Sci., 473, 77 (2019). https://doi.org/10.1016/j.apsusc.2018.12.120
  22. B.-G. Lee, S.-I. Shin, M.-W. Ha and G.-H. An, Curr. Appl. Phys., 20, 419 (2020). https://doi.org/10.1016/j.cap.2020.01.004
  23. M. F. Y. M. Hanappi, M. Deraman, M. Suleman, N. S. M. Nor, N. E. S. Sazali, E. Hamdan, N. S. M. Tajuddin, N. H. Basri, M. R. M. Jasni and M. A. R. Othman, Funct. Mater. Lett., 10, 1750013 (2017). https://doi.org/10.1142/S1793604717500138
  24. O. Ibukun and H. K. Jeong, New Phys.: Sae Mulli, 69, 154 (2019). https://doi.org/10.3938/NPSM.69.154
  25. W. Zhang, D. Liu, H. Lin, H. Lu, J. Xu and D. Liu, Colloid. Surfece. Physicochem. Eng. Aspect., 511, 294 (2016). https://doi.org/10.1016/j.colsurfa.2016.10.009
  26. Y.-G. Lee, H. Jang and G.-H. An, Korean J. Mater. Res., 30, 458 (2020). https://doi.org/10.3740/MRSK.2020.30.9.458
  27. Y.-G. Lee, J. Lee and G.-H. An, Chem. Eng. J., 414, 128916 (2021). https://doi.org/10.1016/j.cej.2021.128916
  28. G.-H. An, Curr. Appl. Phys., 20, 605 (2020). https://doi.org/10.1016/j.cap.2020.02.010
  29. Y.-G. Lee and G.-H. An, Korean J. Mater. Res., 31, 68 (2021). https://doi.org/10.3740/MRSK.2021.31.1.68
  30. G.-H. An, Korean J. Mater. Res., 29, 505 (2019). https://doi.org/10.3740/MRSK.2019.29.8.505
  31. S.-I. Shin, B.-G. Lee, M.-W. Ha and G.-H. An, Korean J. Mater. Res., 29, 774 (2019). https://doi.org/10.3740/MRSK.2019.29.12.774