DOI QR코드

DOI QR Code

슈퍼커패시터용 멜라민 폼으로부터 질소가 자가 도핑된 다공성 탄소 재료의 제조

Fabrication of Nitrogen Self-Doped Porous Carbons from Melamine Foam for Supercapacitors

  • 이병민 (충남대학교 고분자공학과) ;
  • 장형석 (충남대학교 고분자공학과) ;
  • 최재학 (충남대학교 고분자공학과) ;
  • 홍성권 (충남대학교 고분자공학과)
  • Lee, Byoung-Min (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Chang, Hyeong-Seok (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Choi, Jae-Hak (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Hong, Sung-Kwon (Department of Polymer Science and Engineering, Chungnam National University)
  • 투고 : 2021.04.01
  • 심사 : 2021.04.16
  • 발행 : 2021.05.27

초록

Porous carbons have been widely used as electrode material for supercapacitors. However, commercial porous carbons, such as activated carbons, have low electrochemical performance. Nitrogen-doping is one of the most promising strategies to improve electrochemical performance of porous carbons. In this study, nitrogen self-doped porous carbon (NPC) is prepared from melamine foam by carbonization to improve the supercapacitive performance. The prepared NPC is characterized in terms of the chemical structures and elements, morphology, pore structures, and electrochemical performance. The results of the N2 physisorption measurement, X-ray diffraction, and Raman analyses reveal that the prepared NPC has bimodal pore structures and pseudo-graphite structures with nitrogen functionality. The NPC-based electrode exhibits a gravimetric capacitance of 153 F g-1 at 1 A g-1, a rate capability of 73.2 % at 10 A g-1, and an outstanding cycling ability of 97.85 % after 10,000 cycles at 10 A g-1. Thus, the NPC prepared in this study can be applied as electrode material for high-performance supercapacitors.

키워드

과제정보

This work was supported by the research fund of Chungnam National University.

참고문헌

  1. L. Miao, D. Zhu, M. Liu, H. Duan, Z. Wang, Y. Lv, W. Xiong, Q. Zhu, L. Li, X. Chai and L. Gan, Electrochim. Acta, 274, 378 (2018). https://doi.org/10.1016/j.electacta.2018.04.100
  2. D. Xue, D. Zhu, W. Xiong, T. Cao, Z. Wang, Y. Lv, Li. Li, M. Liu and Lihua Gan, ACS Sustainable Chem. Eng., 7, 7024 (2019). https://doi.org/10.1021/acssuschemeng.8b06774
  3. K. W. Sung, D. Y. Shin and H. J. Ahn, Korean J. Mater. Res., 29, 623 (2019). https://doi.org/10.3740/MRSK.2019.29.10.623
  4. S. Lei, L. Chen, W. Zhou, P. Deng, Y. Liu, L. Fei, W. Lu, Y. Xiao and B. Cheng, J. Power Sources, 379, 74 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.032
  5. H. G. Jo, D. Y. Shin and H. J. Ahn, Korean J. Mater. Res., 29, 167 (2019). https://doi.org/10.3740/MRSK.2019.29.3.167
  6. Z. Song, H. Duan, D. Zhu, Y. Lv, W. Xiong, T. Cao, L. Li, M. Liu and L. Gan, J. Mater. Chem. A, 7, 15801 (2019). https://doi.org/10.1039/C9TA02690H
  7. B. M. Lee, J. J. Eom, G. Y. Baek, S. K. Hong, J. P. Jeun, J. H. Choi and J. M. Yun, Cellulose, 26, 4529 (2019). https://doi.org/10.1007/s10570-019-02380-6
  8. Y. Li, G. Wang, T. Wei, Z. Fan and P. Yan, Nano Energy, 19, 165 (2016). https://doi.org/10.1016/j.nanoen.2015.10.038
  9. K. Zou, Y. Deng, J. Chen, Y. Qian, Y. Yang, Y. Li and G. Chen, J. Power Sources, 378, 579 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.081
  10. C. Zheng, X. Zhou, H. Cao, G. Wang and Z. Liu, J. Power Sources, 258, 290 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.056
  11. Y. Zhang, L. Liu, L. Zhang, Y. Yu, H. Lv and A. Chen, J. Mater. Sci., 54, 6451 (2019). https://doi.org/10.1007/s10853-018-03290-x
  12. J. Yin, W. Zhang, N. A. Alhebshi, N. Salah and H. N. Alshareef, Small Methods, 4, 1900853 (2020). https://doi.org/10.1002/smtd.201900853
  13. Y. Gao, W. Zhang, Q. Yue, B. Gao, Y. Sun, J. Kong and P. Zhao, J. Power Sources, 270, 403 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.115
  14. L. Miao, D. Zhu, M. Liu, H. Duan, Z. Wang, Y. Lv, W. Xiong, Q. Zhu, L. Li, X. Chai and L. Gan, Chem. Eng. J., 347, 233 (2018). https://doi.org/10.1016/j.cej.2018.04.116
  15. X. Xin, Z. Wang, R. Jia, C. Gao, L. Sui, H. Dong, J. Feng, S. Ma, B. Pang, Y. Chen, L. Dong and L. Yu, J. Alloys Compd., 822, 153627 (2020). https://doi.org/10.1016/j.jallcom.2019.153627
  16. Y. Wang, Y. Liu, D. Wang, C. Wang, L. Guo and T. Yi, Appl. Surf. Sci., 506, 145014 (2020). https://doi.org/10.1016/j.apsusc.2019.145014
  17. A. Gopalakrishnan and S. Badhulika, J. Power Sources, 480, 228830 (2020). https://doi.org/10.1016/j.jpowsour.2020.228830
  18. W. Ng, Y. Yang, K. van der Veen, G. Rothenberg and N. Yan, Carbon, 129, 293 (2018). https://doi.org/10.1016/j.carbon.2017.12.019
  19. R. Zhang, X. Jing, Y. Chu, L. Wang, W. Kang, D. Wei, H. Li and S. Xiong, J. Mater. Chem. A, 6, 17730 (2018). https://doi.org/10.1039/C8TA06471G
  20. Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng and J. Chen, Adv. Mater., 24, 5610 (2012). https://doi.org/10.1002/adma.201201920
  21. D. K. Kim, N. D. Kim, S. K. Park, K. D. Seong, M. Hwang, N. H. You and Y. Piao, J. Power Sources, 380, 55 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.069
  22. L. Wan, J. Wang, L. Xie, Y. Sun and K. Li, ACS Appl. Mater. Interfaces, 6, 15583 (2014). https://doi.org/10.1021/am504564q
  23. X. Liu, L. Zhou, Y. Zhao, L. Bian, X. Feng and Q. Pu, ACS Appl. Mater. Interfaces, 5, 10280 (2013). https://doi.org/10.1021/am403175q
  24. C. Yuan, X. Liu, M. Jia, Z. Luo and J. Yao, J. Mater. Chem. A, 3, 3409 (2015). https://doi.org/10.1039/C4TA06411A
  25. B. M. Lee, J. M. Jung, I. T. Hwang, J. Shin, S. K. Hong, C. H. Jung, Y. G. Jeong and J. H. Choi, Appl. Surf. Sci., 456, 561 (2018). https://doi.org/10.1016/j.apsusc.2018.06.187
  26. D. Liu, Q. Li, S. Li, J. Houd and H. Zhao, Nanoscale, 11, 4362 (2019). https://doi.org/10.1039/C8NR09914F
  27. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K. S. W. Sing, Pure Appl. Chem., 87, 1051 (2015). https://doi.org/10.1515/pac-2014-1117
  28. B. M. Lee, C. U. Jeong, S. K. Hong, J. M. Yun and J. H. Choi, J. Ind. Eng. Chem., 82, 367 (2020). https://doi.org/10.1016/j.jiec.2019.10.036