• Title/Summary/Keyword: 하부구조물

Search Result 485, Processing Time 0.029 seconds

Analysis of Semi-Rigid Connections on 3D Floating Structures (3차원 플로팅 구조물의 반강접 접합부 해석)

  • Park, Jong-Seo;Song, Hwa-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.175-180
    • /
    • 2012
  • The shape of floating superstructure is the same as other buildings, but the foundation is based not on land but on a floating body. Unlike inland structures, they are largely influenced by the wave load. Deformation of the floating pontoon due to the wave loads affects the connection, which in turn causes problems related to the habitability and safety to the superstructure users. Accordingly, this study conducted elastic analysis regarding rigid connection and semi-rigid connection by the integration analysis that combined together the superstructure and pontoon of the 3-D floating structure. Moreover, this study investigated the results of the separation analysis excluding pontoon and the integration analysis. In addition, elasticity analysis was used to divide up the wave loads cases, and to classify the moment and displacement of the structure depending on connection following the changes in the wave loads.

The study on substructure design and analysis for 5MW offshore wind turbine (5MW급 해상풍력 하부구조물 설계 및 해석에 관한 연구)

  • Sun, Min-Young;Lee, Sung-Bum;Lee, Ki-Yeol;Moon, Byung-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1075-1080
    • /
    • 2014
  • This study aims at dedicating to relevant technology fields by suggesting design methods of structures and estimating their safety in relation to substructure for offshore wind power requiring high safety to various environment conditions. Especially, with respect to 5MW Offshore Wind Power System, this study will provide information about major wind directions and duration in combination with the developing wave climate at the test field. Therefore, connections between wind fields and approaching wave trains will be estimated and their intensity, direction and time shift will be pointed out. Furthermore, the local pressure distribution of breaking waves will be investigated by physical and numerical modeling. The currently applied structural and fatigue assessment of support structures for offshore wind energy converters is based on common design rules. Normally, constructions in structural engineering are treated as limited, single structures. This means that varying aspects of manufacturing are considered by high safety factors.

Experimental Study on Seismic Performance Evaluation of Lake Dike Structures under Earthquake Loading (지진하중에 의한 방수제 구조물의 내진성능 평가를 위한 실험적 연구)

  • Shin, Eun-Chul;Kang, Hyeon-Hoe;Kim, Tae-Jin;Chae, Young-Su;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.53-62
    • /
    • 2011
  • This paper presents the characteristics behavior of dike structure and foundation ground through the shaking table model test. The vibration loadings of design earthquake acceleration of 0.154g was applied to this laboratory model test regarding on dike structure and foundation ground under the structure. The model was formulated with 1/100 design of representative cross section for evaluating the effectiveness of vibration. Based on the test results, we can analysis the behavior of lateral displacement and settlement characteristics of structure under the earthquake loading. The pore water pressure was also monitored in the upper, middle and lower layers of ground. Finally, the actual displacements and pore water pressure of the structure can be predicted by using the results of the laboratory shaking table test.

Validity experiment of dipping method in the manufacture of metal-ceramic substructure (금속 도재 하부구조물 제작 시 침적법의 타당도 실험)

  • Lee, Wan-Sun;Im, Su-Yeon;Kim, Wook-Tae
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.1
    • /
    • pp.26-32
    • /
    • 2015
  • Purpose: The main purpose of this study is to suggest application plan of dipping method by comparing & analysing the difference between addition method and dipping method in the manufacture of metal-ceramic substructure of maxillary central incisor (#1), followed by assessing the work efficiency. Materials and Methods: Master die and hard plaster-copied one were produced and then a total of 20 copies, 10 copies for each through addition method and dipping method, were manufactured and experimented. Copings were fixed on the abutment model and invested in epoxy mounting cup. Samples were cut in labial and lingual direction, using cutter and then rubbed on sandpaper, whose 4 points were measured by using digital microscope. Results: The comparison of mean values by using t-test, parametric statistical method, shows overall significant difference (P < 0.05). Conclusion: The result of this study can be suggested as an application plan, since there is no significant difference between addition method and dipping method in the manufacture of metal-ceramic substructure.

Comparison of Super Structure-Sub Structure Separation Analysis and Unification Analysis about Building Structures (건축구조물의 상부구조-하부구조 분리해석과 일체해석의 비교분석)

  • Kim, Jae-Yo;Kim, Jin-Yong;Kang, Su-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.19-28
    • /
    • 2016
  • In the case of structural analysis for building structures, the super-structure and the sub-structure are analyzed by using separate structural models in the field because of time saving, facile result interpretation and easy analysis of dynamic behavior. However this separate structural model violated the compatibility condition of structural analysis and it can not consider the interaction of superand sub- structures. In the present study, the analysis results of this separate model were compared to those of the unified model of super- and sub- structures which can consider the interaction of super- and sub- structures and reflect the realistic boundary conditions. According to the comparison results, the the analysis model using separate models can underestimate the member force and deflection of structural members in the super-structures and overestimate the deflection and member force of sub-structures. Therefore, in the case of high-rise buildings, irregular shaped buildings, buildings which are expected to be affected by large differential settlement and remodeling buildings, the unified structural model for super- and sub- structures was recommended for structural analysis instead of the separate structural model.

Natural Period Estimation for the Buildings of Upper Wall and Lower Frame Type (상부벽식-하부골조를 가진 복합구조물의 고요주기예측)

  • 박기수;김희철;김종헌
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.4
    • /
    • pp.1-13
    • /
    • 2000
  • 상부벽식 하부골조를 가진 복합구조물은 부족한 대지를 효율적으로 활용하기 위하여 건설되고 있다. 이러한 복합건물은 상부벽식-하부골조를 가지는 구조로써 일반적으로 전이보 또는 전이판으로 상하부를 연결하고 있다. 따라서 상하부 구조사이의 강성과 질량에 많은 차이가 발생하게 된다. 구보물의 고유주기는 지진하중과 밑면전단력을 결정하기 위한 중요한 변수이다. 그러나 현재 국내 규준에서 제안하는 고유주기 산정식은 이러한 건물에는 적용할 수 없다. 본 연구에서는 상부벽식-하부골조를 가진 복합구조물의 고유주기의 산정에 영향을 미치는 변수들 중 가장 큰 영향을 미치는 건물의 상하부 층수에 따른 변수만을 고려하여 고유주기산정식을 제안하였다. 하부는 2~5개 층을 가지고, 상부는 10~18개 층을 가지는 15~20층의 건물이면 정형적인 평면을 가지는 복합구조물로 한정하였다. 건물 내부의 채움벽에 대한 효과를 고려한 고유주기 제안식은 다음과 같다. 장변 방향 : $T_{L}$=($0.20H_{h}+0.05H_{i}$)/$sqrt{B}$-0.42 단변 방향 :$T_{S}$=($0.07H_{h}+0.12H_{i}$)/$sqrt{B}$-0.40

  • PDF

Development of Foundation Structure for 8MW Offshore Wind Turbine on Soft Clay Layer (점토층 지반에 설치 가능한 8MW급 해상풍력발전기 하부구조물 개발)

  • Seo, Kwang-Cheol;Choi, Ju-Seok;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.394-401
    • /
    • 2021
  • The construction of new renewable energy facilities is steadily increasing every year. In particular, the offshore wind farm market, which has abundant development scalability and a high production coefficient, is growing rapidly. The southwest sea has the highest possible offshore wind power potential, and related projects are to be promoted. This study presents a basic design procedure by the EUROCODE and considers structural safety in the development of an effective of shore wind foundation in the clay layer. In a previous study, the wind power generator of 5MW class was the main target, but the 8MW of wind turbine generator, which meets the technical trend of the wind turbine market in the Southwest sea, was selected as the standard model. Furthermore, a foundation that fulfills the geological conditions of the Southwest sea was developed. The structural safety of this foundation was verified using finite element method. Moreover, structural safety was secured by proper reinforcement from the initial design. Based on the results of this study, structural safety check for various types of foundations is possible in the future. Additionally, specialized structural design and evaluation guidance were also established.

Development and Application of Cone Penetrometer with Impact Penetration Rod for Evaluation of Track Substructure (철도궤도 하부구조물 평가를 위한 타격식 관입 롯드가 체결된 콘 관입기의 개발 및 적용)

  • Hong, Wontaek;Byun, Yonghoon;Kim, Sangyeob;Choi, Chanyong;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.2
    • /
    • pp.45-52
    • /
    • 2015
  • To minimize the cost of maintenance, repair and over-design of track substructure, an accurate evaluation of strength and stiffness of the track substructure is necessary. In this study, a cone penetrometer with impact penetration rod (CPI) is developed for the evaluation of track substructure. For applicability test, the chamber and field tests were performed. As the experimental results of the CPI, dynamic cone penetration endex (DCPI), cone tip resistance ($q_c$), friction resistance ($f_s$) and friction ratio (Fr) were obtained. In the chamber test, the experimental results show reasonable values for the simulated track substructure. In the field test, the CPI clearly detects the interface between the ballast and the subgrade. Also, discontinuous layers are detected in the subgrade. It is expected that the developed CPI may be an effective tool for the evaluation of track substructure by evaluating the ballast layer by dynamic penetration and the subgrade by static penetration of the inner rod.

A Study on the Basic Properties of Concrete and Characteristics of Blended Low Heat Cement (혼합형 저발열 시멘트의 특성과 콘크리트 기초 물성에 관한 연구)

  • 송용순;한정호;강석화;김상철
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.177-187
    • /
    • 1998
  • 최근 국내에서 해양 구조물, 장대 교량의 하부구조물, LNG저장탱크 등 매스콘크리트의 증가추세에 따라 구조물의 고내구성과 관련하여 시멘트의수화열에 의한 온도균열의 발생을 최소화 시킬 수 있는 3성분계 혼합형 저발열시멘트가 개발되어 실 구조물의 적용단계에 있으나, 저발열시멘트가 개발되어 실 구조물의 적용단계에 있으나 저발열시멘트의 특성에 대한 전반적인 연구보고가 국내에서는 미진한 실정이다. 따라서 본 연구에서는 3성분계 혼합형 저발열시멘트의 특성 및 코\ulcorner리트의기초물성을 1종 보통포틀랜트 시멘트, 5종 내황산염시멘트, 슬래그시멘트와 비교하였다. 글 결과 저발열 콘크리트의 찹축강도는 초기재령에서 강도발현률이 적은 반면 장기강도발현률은 상당히 큰 경향을 보였다. 또한 수화열은 1종시멘트를 사용한 콘크리트에 비하여 1/3~1/2정도로 매스콘크리트의 수화열을 대폭적으로 저감시킬 수 있을 뿐만 아니라 염소이온에 대한 저항성이 상대적으로 높게 나타나 거대 해양 구조물의 적용에 매우 유리한 시멘트로 판단되었다.

The Nonlinear Behavior Characteristics of the 3D Mixed Building Structures with Variations in the Lower Stories (입체 복합구조물의 하부골조 층수 변화에 따른 비선형 거동특성)

  • 강병두;전대한;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.55-62
    • /
    • 2002
  • The upper wall-lower frame structures(mixed building structures) are usually composed of shear wall structure in the upper part of structure which is used as residential space and frame structure in the lower part of structure which is used as commercial space centering around the transfer system in the lower part of structure. These structures are characteristics of stiffness irregularity, mass irregularity, and vertical geometric irregularity. The purpose of this study is to investigate the nonlinear response characteristics and the seismic capacity of mixed building structures when the number of stories in the lower frame is varied. The conclusions of this study are following. 1) As the result of push-over analysis of structure such as roof drift(i.e. roof displacement/structural height) and base shear coefficient, when the stories of lower frame system are increased, base shear coefficient is decreased, but roof drift is increased. 2) According to an increase in stories of the lower fame, story drift and ductility ratio of upper wall system are decreased and behavior of upper wall system is closed to elastic. 3) When the stories of lower frame system are increased, the excessive story drift is concentrated on the lower frame system.