Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation (NRF) funded by the Ministry of Science, Information and Communications Technology and Future Planning (2018R1A2A3074639, 2019R1A2C2084453, 2020R1C1C1004968, and 2021R1A2C2006032) and by Ministry of Education (2018R1D1A1B07047162), South Korea. We also thank Dr. G.Y. Koh for providing IND-COMP-Ang1-Tg mice and B.-C. Lee for advising in manuscript preparation.
References
- Arai, F., Hirao, A., Ohmura, M., Sato, H., Matsuoka, S., Takubo, K., Lto, K., Koh, G.Y., and Suda, T. (2004). Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149-161. https://doi.org/10.1016/j.cell.2004.07.004
- Bibikova, E., Youn, M.Y., Danilova, N., Yukako, O.U., Yoan, K.G., Ochoa, R., Narla, A., Glader, B., Lin, S., and Sakamoto, K.M. (2014). TNF-mediated inflammation represses GATA1 and activates p38 MAP kinase in RPS19-deficient hematopoietic progenitors. Blood 124, 3791-3798.
- Boulais, P. and Frenette, P.S. (2015). Making sense of hematopoietic stem cell niches. Blood 125, 2621-2629. https://doi.org/10.1182/blood-2014-09-570192
- Brindle, N.P., Saharinen, P., and Alitalo, K. (2006). Signaling and functions of angiopoietin-1 in vascular protection. Circ. Res. 98, 1014-1023. https://doi.org/10.1161/01.RES.0000218275.54089.12
- Chen, J., Kang, J.G., Keyvanfar, K., Young, N.S., and Hwang, P.M. (2016). Long-term adaptation to hypoxia preserves hematopoietic stem cell function. Exp. Hematol. 44, 866-873. https://doi.org/10.1016/j.exphem.2016.04.010
- Cho, C.H., Kammerer, R.A., Lee, H.J., Steinmetz, M.O., Ryu, Y.S., Lee, S.H., Yasunaga, K., Kim, K.T., Kim, I., Choi, H.H., et al. (2004). COMP-Ang1: a designed angiopoietin-1 variant with nonleaky angiogenic activity. Proc. Natl. Acad. Sci. U. S. A. 101, 5547-5552. https://doi.org/10.1073/pnas.0307574101
- Cho, C.H., Kim, K.E., Byun, J.H., Jang, H.S., Kim, D.K., Baluk, P., Baffert, F., Lee, G.M., Mochizuki, N., Kim, J., et al. (2005). Long-term and sustained COMP-Ang1 induces long-lasting vascular enlargement and enhanced blood flow. Circ. Res. 97, 86-94. https://doi.org/10.1161/01.RES.0000174093.64855.a6
- Dassule, H.R., Lewis, P., Bei, M., Maas, R., and McMahon, A.P. (2000). Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 127, 4775-4785. https://doi.org/10.1242/dev.127.22.4775
- de Thonel, A., Vandekerckhove, J., Lanneau, D., Selvakumar, S., Courtois, G., Hazoume, A., Brunet, M., Maurel, S., Hammann, A., Ribeil, J.A., et al. (2010). HSP27 controls GATA-1 protein level during erythroid cell differentiation. Blood 116, 85-96.
- Ding, L. and Morrison, S.J. (2013). Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231-235. https://doi.org/10.1038/nature11885
- Ehninger, A. and Trumpp, A. (2011). The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J. Exp. Med. 208, 421-428. https://doi.org/10.1084/jem.20110132
- Ferreira, R., Ohneda, K., Yamamoto, M., and Philipsen, S. (2005). GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol. Cell. Biol. 25, 1215-1227. https://doi.org/10.1128/MCB.25.4.1215-1227.2005
- Hato, T., Kimura, Y., Morisada, T., Koh, G.Y., Miyata, K., Tabata, M., Kadomatsu, T., Endo, M., Urano, T., Arai, F., et al. (2009). Angiopoietins contribute to lung development by regulating pulmonary vascular network formation. Biochem. Biophys. Res. Commun. 381, 218-223. https://doi.org/10.1016/j.bbrc.2009.02.030
- Ikushima, Y.M., Arai, F., Nakamura, Y., Hosokawa, K., Kubota, Y., Hirashima, M., Toyama, H., and Suda, T. (2013). Enhanced Angpt1/Tie2 signaling affects the differentiation and long-term repopulation ability of hematopoietic stem cells. Biochem. Biophys. Res. Commun. 430, 20-25. https://doi.org/10.1016/j.bbrc.2012.11.002
- Joo, H.J., Kim, H.S., Park, S.W., Cho, H.J., Kim, H.S., Lim, D.S., Chung, H.M., Kim, I.J., Han, Y.M., and Koh, G.Y. (2011). Angiopoietin-1 promotes endothelial differentiation from embryonic stem cells and induced pluripotent stem cells. Blood 118, 2094-2104. https://doi.org/10.1182/blood.v118.21.2094.2094
- Katayama, Y., Battista, M., Kao, W.M., Hidalgo, A., Peired, A.J., Thomas, S.A., and Frenette, P.S. (2006). Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407-421. https://doi.org/10.1016/j.cell.2005.10.041
- Kertesz, N., Wu, J., Chen, T.H., Sucov, H.M., and Wu, H. (2004). The role of erythropoietin in regulating angiogenesis. Dev. Biol. 276, 101-110. https://doi.org/10.1016/j.ydbio.2004.08.025
- Koh, G.Y. (2013). Orchestral actions of angiopoietin-1 in vascular regeneration. Trends Mol. Med. 19, 31-39. https://doi.org/10.1016/j.molmed.2012.10.010
- Kook, S.H., Sim, H.J., Hwang, J.W., Baek, Y.H., Kim, C.C., Lee, J.H., Cho, E.S., and Lee, J.C. (2018). Genetic overexpression of COMP-Ang1 impairs BM microenvironment and induces senescence of BM HSCs. Biochem. Biophys. Res. Commun. 499, 669-674. https://doi.org/10.1016/j.bbrc.2018.03.210
- Kook, S.H., Yun, C.Y., Sim, H.J., Bhattarai, G., Lee, B.C., Lee, K.Y., Cho, E.S., and Lee, J.C. (2016). Smad4 in osteoblasts exerts a differential impact on HSC fate depending on osteoblast maturation stage. Leukemia 30, 2039-2046. https://doi.org/10.1038/leu.2016.133
- Kusumbe, A.P., Ramasamy, S.K., and Adams, R.H. (2014). Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507, 323-328. https://doi.org/10.1038/nature13145
- Lee, J.Y., Park, D.Y., Park, D.Y., Park, I.T., Chang, W.H., Nakaoka, Y., Komuro, I., Yoo, O.J., and Koh, G.Y. (2014). Angiopoietin-1 suppresses choroidal neovascularization and vascular leakage. Invest. Ophthalmol. Vis. Sci. 55, 2191-2199. https://doi.org/10.1167/iovs.14-13897
- Matte, A. and de Franceschi, L. (2019). Oxidation and erythropoiesis. Curr. Opin. Hematol. 26, 145-151. https://doi.org/10.1097/MOH.0000000000000495
- Pevny, L., Lin, C.S., D'Agati, V., Simon, M.C., Orkin, S.H., and Costantini, F. (1995). Development of hematopoietic cells lacking transcription factor GATA-1. Development 121, 163-172. https://doi.org/10.1242/dev.121.1.163
- Pevny, L., Simon, M.C., Robertson, E., Klein, W.H., Tsai, S.F., D'Agati, V., Orkin, S.H., and Costantini, F. (1991). Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA1. Nature 349, 257-260. https://doi.org/10.1038/349257a0
- Soriano, P. (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70-71. https://doi.org/10.1038/5007
- Suda, T., Takakura, N., and Oike, Y. (2000). Hematopoiesis and angiogenesis. Int. J. Hematol. 71, 99-107.
- Sugiyama, T., Kohara, H., Noda, M., and Nagasawa, T. (2006). Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977-988. https://doi.org/10.1016/j.immuni.2006.10.016
- Suri, C., McClain, J., Thurston, G., McDonald, D.M., Zhou, H., Oldmixon, E.H., Sato, T.N., and Yancopoulos, G.D. (1998). Increased vascularization in mice overexpressing angiopoietin-1. Science 282, 468-471. https://doi.org/10.1126/science.282.5388.468
- Takakura, N., Watanabe, T., Suenobu, S., Yamada, Y., Noda, T., Ito, Y., Satake, M., and Suda, T. (2000). A role for hematopoietic stem cells in promoting angiogenesis. Cell 102, 199-209. https://doi.org/10.1016/S0092-8674(00)00025-8
- Thurston, G., Suri, C., Smith, K., McClain, J., Sato, T.N., Yancopoulos, G.D., and McDonald, D.M. (1999). Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286, 2511-2514. https://doi.org/10.1126/science.286.5449.2511
- Whyatt, D., Lindeboom, F., Karis, A., Ferreira, R., Milot, E., Hendriks, R., de Bruijn, M., Langeveld, A., Gribnau, J., Grosveld, F., et al. (2000). An intrinsic but cell-nonautonomous defect in GATA-1-overexpressing mouse erythroid cells. Nature 406, 519-524. https://doi.org/10.1038/35020086
- Whyatt, D.J., Karis, A., Harkes, I.C., Verkerk, A., Gillemans, N., Elefanty, A.G., Vairo, G., Ploemacher, R., Grosveld, F., and Philipsen, S. (1997). The level of the tissue-specific factor GATA-1 affects the cellcycle machinery. Genes Funct. 1, 11-24. https://doi.org/10.1046/j.1365-4624.1997.00003.x
- Youn, S.W., Lee, S.W., Lee, J., Jeong, H.K., Suh, J.W., Yoon, C.H., Kang, H.J., Kim, H.Z., Koh, G.Y., Oh, B.H., et al. (2011). COMP-Ang1 stimulates HIF-1-mediated SDF-1 overexpression and recovers ischemic injury through BM-derived progenitor cell recruitment. Blood 117, 4376-4386. https://doi.org/10.1182/blood-2010-07-295964
- Yu, C., Cantor, A.B., Yang, H., Browne, C., Wells, R.A., Fujiwara, Y., and Orkin, S.H. (2002). Targeted deletion of a high-affinity GATA-binding site in the GATA1 promoter leads to selective loss of the eosinophil lineage in vivo. J. Exp. Med. 195, 1387-1395. https://doi.org/10.1084/jem.20020656
- Zhang, J., Niu, C., Ye, L., Huang, H., He, X., Tong, W.G., Ross, J., Haug, J., Johnson, T., Feng, J.Q., et al. (2003). Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836-841. https://doi.org/10.1038/nature02041
- Zhang, X., Sejas, D.P., Qiu, Y., Williams, D.A., and Pang, Q. (2007). Inflammatory ROS promote and cooperate with the Fanconi anemia mutation for hematopoietic senescence. J. Cell Sci. 120, 1572-1583. https://doi.org/10.1242/jcs.003152
- Zhou, B.O., Ding, L., and Morrison, S.J. (2015). Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting angiopoietin-1. Elife 4, e05521. https://doi.org/10.7554/eLife.05521
- Zhou, Y., He, Y., Xing, W., Zhang, P., Shi, H., Chen, S., Shi, J., Bai, J., Rhodes, S.D., Zhang, F., et al. (2017). An abnormal bone marrow microenviornment contributes to hematopoietic dysfuction in Fanconi anemia. Haematologica 102, 1017-1027. https://doi.org/10.3324/haematol.2016.158717
Cited by
- COMP-Ang1: Therapeutic potential of an engineered Angiopoietin-1 variant vol.141, 2021, https://doi.org/10.1016/j.vph.2021.106919