Acknowledgement
This work was financially supported through National Research Foundation (NRF) of Korea grants funded by the Korean Government (No. NRF-2016R1A2B4012683) and the research fund of Catholic Kwandong University for Dr. S.-W. Kim; the research fund of Dong-A University for Dr. S. Han; and an NRF of Korea grant funded by the Korean government (No. NRF-2020R1C1C101316611) for Dr. D.-S. Chae.
References
- Aggarwal, S. and Pittenger, M.F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105, 1815-1822. https://doi.org/10.1182/blood-2004-04-1559
- Alviano, F., Fossati, V., Marchionni, C., Arpinati, M., Bonsi, L., Franchina, M., Lanzoni, G., Cantoni, S., Cavallini, C., Bianchi, F., et al. (2007). Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro. BMC Dev. Biol. 7, 11. https://doi.org/10.1186/1471-213X-7-11
- Backesjo, C.M., Li, Y., Lindgren, U., and Haldosen, L.A. (2009). Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. Cells Tissues Organs 189, 93-97. https://doi.org/10.1159/000151744
- Benabdallah, B.F., Allard, E., Yao, S., Friedman, G., Gregory, P.D., Eliopoulos, N., Fradette, J., Spees, J.L., Haddad, E., Holmes, M.C., et al. (2010). Targeted gene addition to human mesenchymal stromal cells as a cell-based plasma-soluble protein delivery platform. Cytotherapy 12, 394-399. https://doi.org/10.3109/14653240903583803
- Buhrmann, C., Busch, F., Shayan, P., and Shakibaei, M. (2014). Sirtuin-1 (SIRT1) is required for promoting chondrogenic differentiation of mesenchymal stem cells. J. Biol. Chem. 289, 22048-22062. https://doi.org/10.1074/jbc.M114.568790
- Chang, H.K., Kim, P.H., Cho, H.M., Yum, S.Y., Choi, Y.J., Son, Y., Lee, D., Kang, I., Kang, K.S., Jang, G., et al. (2016). Inducible HGF-secreting human umbilical cord blood-derived MSCs produced via TALEN-mediated genome editing promoted angiogenesis. Mol. Ther. 24, 1644-1654. https://doi.org/10.1038/mt.2016.120
- Choi, B., Chun, E., Kim, S.Y., Kim, M., Lee, K.Y., and Kim, S.J. (2012). Notch-induced hIL-6 production facilitates the maintenance of self-renewal of hCD34+ cord blood cells through the activation of Jak-PI3K-STAT3 pathway. Am. J. Pathol. 180, 351-364. https://doi.org/10.1016/j.ajpath.2011.09.030
- Choi, J.S., Jeong, I.S., Han, J.H., Cheon, S.H., and Kim, S.W. (2019). IL-10-secreting human MSCs generated by TALEN gene editing ameliorate liver fibrosis through enhanced anti-fibrotic activity. Biomater. Sci. 7, 1078-1087. https://doi.org/10.1039/c8bm01347k
- Delgado, M., Abad, C., Martinez, C., Leceta, J., and Gomariz, R.P. (2001). Vasoactive intestinal peptide prevents experimental arthritis by downregulating both autoimmune and inflammatory components of the disease. Nat. Med. 7, 563-568. https://doi.org/10.1038/87887
- Don, R., Cox, P., Wainwright, B., Baker, K., and Mattick, J. (1991). 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19, 4008. https://doi.org/10.1093/nar/19.14.4008
- Dvir-Ginzberg, M. and Steinmeyer, J. (2013). Towards elucidating the role of SirT1 in osteoarthritis. Front. Biosci. (Landmark Ed.) 18, 343-355. https://doi.org/10.2741/4105
- Farhang, N., Brunger, J.M., Stover, J.D., Thakore, P.I., Lawrence, B., Guilak, F., Gersbach, C.A., Setton, L.A., and Bowles, R.D. (2017). (*) CRISPR-based epigenome editing of cytokine receptors for the promotion of cell survival and tissue deposition in inflammatory environments. Tissue Eng. Part A 23, 738-749. https://doi.org/10.1089/ten.tea.2016.0441
- Gabay, O., Zaal, K.J., Sanchez, C., Dvir-Ginzberg, M., Gagarina, V., Song, Y., He, X.H., and McBurney, M.W. (2013). Sirt1-deficient mice exhibit an altered cartilage phenotype. Joint Bone Spine 80, 613-620. https://doi.org/10.1016/j.jbspin.2013.01.001
- Han, J.H., Han, S., Jeong, I.S., Cheon, S.H., and Kim, S.W. (2020). Minicircle-based GCP-2 ex vivo gene therapy enhanced the reepithelialization and angiogenic capacity. J. Tissue Eng. Regen. Med. 14, 829-839. https://doi.org/10.1002/term.3049
- Hedbom, E. and Hauselmann, H.J. (2002). Molecular aspects of pathogenesis in osteoarthritis: the role of inflammation. Cell. Mol. Life Sci. 59, 45-53. https://doi.org/10.1007/s00018-002-8404-z
- Jang, K.H., Hwang, Y., and Kim, E. (2020). PARP1 impedes SIRT1-mediated autophagy during degeneration of the retinal pigment epithelium under oxidative stress. Mol. Cells 43, 632-644. https://doi.org/10.14348/molcells.2020.0078
- Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821. https://doi.org/10.1126/science.1225829
- Kehoe, O., Cartwright, A., Askari, A., El Haj, A.J., and Middleton, J. (2014). Intra-articular injection of mesenchymal stem cells leads to reduced inflammation and cartilage damage in murine antigen-induced arthritis. J. Transl. Med. 12, 157. https://doi.org/10.1186/1479-5876-12-157
- Kim, S.W., Kim, H., Cho, H.J., Lee, J.U., Levit, R., and Yoon, Y.S. (2010). Human peripheral blood-derived CD31+ cells have robust angiogenic and vasculogenic properties and are effective for treating ischemic vascular disease. J. Am. Coll. Cardiol. 56, 593-607. https://doi.org/10.1016/j.jacc.2010.01.070
- Korbie, D.J. and Mattick, J.S. (2008). Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat. Protoc. 3, 1452-1456. https://doi.org/10.1038/nprot.2008.133
- Matsushita, T., Sasaki, H., Takayama, K., Ishida, K., Matsumoto, T., Kubo, S., Matsuzaki, T., Nishida, K., Kurosaka, M., and Kuroda, R. (2013). The overexpression of SIRT1 inhibited osteoarthritic gene expression changes induced by interleukin-1beta in human chondrocytes. J. Orthop. Res. 31, 531-537. https://doi.org/10.1002/jor.22268
- Ou, X., Ying, J., Bai, X., Wang, C., and Ruan, D. (2020). Activation of SIRT1 promotes cartilage differentiation and reduces apoptosis of nucleus pulposus mesenchymal stem cells via the MCP1/CCR2 axis in subjects with intervertebral disc degeneration. Int. J. Mol. Med. 46, 1074-1084. https://doi.org/10.3892/ijmm.2020.4668
- Peng, L., Yuan, Z., Ling, H., Fukasawa, K., Robertson, K., Olashaw, N., Koomen, J., Chen, J., Lane, W.S., and Seto, E. (2011). SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Mol. Cell. Biol. 31, 4720-4734. https://doi.org/10.1128/MCB.06147-11
- Qasim, M., Le, N.X.T., Nguyen, T.P.T., Chae, D.S., Park, S.J., and Lee, N.Y. (2020). Nanohybrid biodegradable scaffolds for TGF-beta3 release for the chondrogenic differentiation of human mesenchymal stem cells. Int. J. Pharm. 581, 119248. https://doi.org/10.1016/j.ijpharm.2020.119248
- Razawy, W., Asmawidjaja, P.S., Mus, A.M., Salioska, N., Davelaar, N., Kops, N., Oukka, M., Alves, C.H., and Lubberts, E. (2020). CD4(+) CCR6(+) T cells, but not gammadelta T cells, are important for the IL-23R-dependent progression of antigen-induced inflammatory arthritis in mice. Eur. J. Immunol. 50, 245-255. https://doi.org/10.1002/eji.201948112
- Tsuji, H., Miyoshi, S., Ikegami, Y., Hida, N., Asada, H., Togashi, I., Suzuki, J., Satake, M., Nakamizo, H., Tanaka, M., et al. (2010). Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circ. Res. 106, 1613-1623. https://doi.org/10.1161/CIRCRESAHA.109.205260
- Wu, C.C., Liu, F.L., Sytwu, H.K., Tsai, C.Y., and Chang, D.M. (2016). CD146+ mesenchymal stem cells display greater therapeutic potential than CD146- cells for treating collagen-induced arthritis in mice. Stem Cell Res. Ther. 7, 23. https://doi.org/10.1186/s13287-016-0285-4
Cited by
- Mesenchymal Stem Cells Suppress Severe Asthma by Directly Regulating Th2 Cells and Type 2 Innate Lymphoid Cells vol.44, pp.8, 2021, https://doi.org/10.14348/molcells.2021.0101
- ASC and SVF Cells Synergistically Induce Neovascularization in Ischemic Hindlimb Following Cotransplantation vol.23, pp.1, 2021, https://doi.org/10.3390/ijms23010185