DOI QR코드

DOI QR Code

Genome Edited Sirt1-Overexpressing Human Mesenchymal Stem Cells Exhibit Therapeutic Effects in Treating Collagen-Induced Arthritis

  • Chae, Dong-Sik (Department of Orthopedic Surgery, International St. Mary's Hospital, Catholic Kwandong University College of Medicine) ;
  • Han, Seongho (Department of Family Medicine, Dong-A University Medical Center, Dong-A University College of Medicine) ;
  • Lee, Min-Kyung (Department of Dental Hygine, Dong-Eui Universtigy) ;
  • Kim, Sung-Whan (Department Medicine, Catholic Kwandong University College of Medicine)
  • Received : 2021.02.16
  • Accepted : 2021.04.01
  • Published : 2021.04.30

Abstract

Even though mesenchymal stem cells (MSCs) are known for cartilage regeneration, their therapeutic efficacy needs to be enhanced. In the present study, we produced genome-edited silent information regulator 2 type 1 (Sirt1)-overexpressing MSCs, and evaluated their therapeutic potential in a damaged cartilage mouse liver fibrosis model. The Sirt1 gene was successfully inserted into a 'safe harbor' genomic locus in amniotic mesenchymal stem cells (AMMs), and the chondrogenic properties of the Sirt1 gene overexpressing AMMs (AMM/S) were characterized using quantitative PCR and histology. Therapeutic potentials were investigated in a collagen-induced arthritis (CIA) mouse model. Chondrocyte-differentiated AMM/S expressed cartilage-specific genes and were positive for Safranin O staining. Transplantation of AMM/S attenuated CIA progression and suppressed T helper (Th)-17 cell activation while increasing the Treg cell population in CIA mice. Pro-inflammatory factors, such as interleukin (IL)-1β, IL-6, monocyte chemoattractant protein (MCP)-1, and tumor necrosis factor (TNF)-α were significantly decreased in AMM/S-injected joint tissues. In conclusion, genome-edited AMM/S may represent a safe and alternative therapeutic option for the treatment and repair of damaged cartilage, or in inflammatory joint arthritis.

Keywords

Acknowledgement

This work was financially supported through National Research Foundation (NRF) of Korea grants funded by the Korean Government (No. NRF-2016R1A2B4012683) and the research fund of Catholic Kwandong University for Dr. S.-W. Kim; the research fund of Dong-A University for Dr. S. Han; and an NRF of Korea grant funded by the Korean government (No. NRF-2020R1C1C101316611) for Dr. D.-S. Chae.

References

  1. Aggarwal, S. and Pittenger, M.F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105, 1815-1822. https://doi.org/10.1182/blood-2004-04-1559
  2. Alviano, F., Fossati, V., Marchionni, C., Arpinati, M., Bonsi, L., Franchina, M., Lanzoni, G., Cantoni, S., Cavallini, C., Bianchi, F., et al. (2007). Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro. BMC Dev. Biol. 7, 11. https://doi.org/10.1186/1471-213X-7-11
  3. Backesjo, C.M., Li, Y., Lindgren, U., and Haldosen, L.A. (2009). Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. Cells Tissues Organs 189, 93-97. https://doi.org/10.1159/000151744
  4. Benabdallah, B.F., Allard, E., Yao, S., Friedman, G., Gregory, P.D., Eliopoulos, N., Fradette, J., Spees, J.L., Haddad, E., Holmes, M.C., et al. (2010). Targeted gene addition to human mesenchymal stromal cells as a cell-based plasma-soluble protein delivery platform. Cytotherapy 12, 394-399. https://doi.org/10.3109/14653240903583803
  5. Buhrmann, C., Busch, F., Shayan, P., and Shakibaei, M. (2014). Sirtuin-1 (SIRT1) is required for promoting chondrogenic differentiation of mesenchymal stem cells. J. Biol. Chem. 289, 22048-22062. https://doi.org/10.1074/jbc.M114.568790
  6. Chang, H.K., Kim, P.H., Cho, H.M., Yum, S.Y., Choi, Y.J., Son, Y., Lee, D., Kang, I., Kang, K.S., Jang, G., et al. (2016). Inducible HGF-secreting human umbilical cord blood-derived MSCs produced via TALEN-mediated genome editing promoted angiogenesis. Mol. Ther. 24, 1644-1654. https://doi.org/10.1038/mt.2016.120
  7. Choi, B., Chun, E., Kim, S.Y., Kim, M., Lee, K.Y., and Kim, S.J. (2012). Notch-induced hIL-6 production facilitates the maintenance of self-renewal of hCD34+ cord blood cells through the activation of Jak-PI3K-STAT3 pathway. Am. J. Pathol. 180, 351-364. https://doi.org/10.1016/j.ajpath.2011.09.030
  8. Choi, J.S., Jeong, I.S., Han, J.H., Cheon, S.H., and Kim, S.W. (2019). IL-10-secreting human MSCs generated by TALEN gene editing ameliorate liver fibrosis through enhanced anti-fibrotic activity. Biomater. Sci. 7, 1078-1087. https://doi.org/10.1039/c8bm01347k
  9. Delgado, M., Abad, C., Martinez, C., Leceta, J., and Gomariz, R.P. (2001). Vasoactive intestinal peptide prevents experimental arthritis by downregulating both autoimmune and inflammatory components of the disease. Nat. Med. 7, 563-568. https://doi.org/10.1038/87887
  10. Don, R., Cox, P., Wainwright, B., Baker, K., and Mattick, J. (1991). 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19, 4008. https://doi.org/10.1093/nar/19.14.4008
  11. Dvir-Ginzberg, M. and Steinmeyer, J. (2013). Towards elucidating the role of SirT1 in osteoarthritis. Front. Biosci. (Landmark Ed.) 18, 343-355. https://doi.org/10.2741/4105
  12. Farhang, N., Brunger, J.M., Stover, J.D., Thakore, P.I., Lawrence, B., Guilak, F., Gersbach, C.A., Setton, L.A., and Bowles, R.D. (2017). (*) CRISPR-based epigenome editing of cytokine receptors for the promotion of cell survival and tissue deposition in inflammatory environments. Tissue Eng. Part A 23, 738-749. https://doi.org/10.1089/ten.tea.2016.0441
  13. Gabay, O., Zaal, K.J., Sanchez, C., Dvir-Ginzberg, M., Gagarina, V., Song, Y., He, X.H., and McBurney, M.W. (2013). Sirt1-deficient mice exhibit an altered cartilage phenotype. Joint Bone Spine 80, 613-620. https://doi.org/10.1016/j.jbspin.2013.01.001
  14. Han, J.H., Han, S., Jeong, I.S., Cheon, S.H., and Kim, S.W. (2020). Minicircle-based GCP-2 ex vivo gene therapy enhanced the reepithelialization and angiogenic capacity. J. Tissue Eng. Regen. Med. 14, 829-839. https://doi.org/10.1002/term.3049
  15. Hedbom, E. and Hauselmann, H.J. (2002). Molecular aspects of pathogenesis in osteoarthritis: the role of inflammation. Cell. Mol. Life Sci. 59, 45-53. https://doi.org/10.1007/s00018-002-8404-z
  16. Jang, K.H., Hwang, Y., and Kim, E. (2020). PARP1 impedes SIRT1-mediated autophagy during degeneration of the retinal pigment epithelium under oxidative stress. Mol. Cells 43, 632-644. https://doi.org/10.14348/molcells.2020.0078
  17. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821. https://doi.org/10.1126/science.1225829
  18. Kehoe, O., Cartwright, A., Askari, A., El Haj, A.J., and Middleton, J. (2014). Intra-articular injection of mesenchymal stem cells leads to reduced inflammation and cartilage damage in murine antigen-induced arthritis. J. Transl. Med. 12, 157. https://doi.org/10.1186/1479-5876-12-157
  19. Kim, S.W., Kim, H., Cho, H.J., Lee, J.U., Levit, R., and Yoon, Y.S. (2010). Human peripheral blood-derived CD31+ cells have robust angiogenic and vasculogenic properties and are effective for treating ischemic vascular disease. J. Am. Coll. Cardiol. 56, 593-607. https://doi.org/10.1016/j.jacc.2010.01.070
  20. Korbie, D.J. and Mattick, J.S. (2008). Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat. Protoc. 3, 1452-1456. https://doi.org/10.1038/nprot.2008.133
  21. Matsushita, T., Sasaki, H., Takayama, K., Ishida, K., Matsumoto, T., Kubo, S., Matsuzaki, T., Nishida, K., Kurosaka, M., and Kuroda, R. (2013). The overexpression of SIRT1 inhibited osteoarthritic gene expression changes induced by interleukin-1beta in human chondrocytes. J. Orthop. Res. 31, 531-537. https://doi.org/10.1002/jor.22268
  22. Ou, X., Ying, J., Bai, X., Wang, C., and Ruan, D. (2020). Activation of SIRT1 promotes cartilage differentiation and reduces apoptosis of nucleus pulposus mesenchymal stem cells via the MCP1/CCR2 axis in subjects with intervertebral disc degeneration. Int. J. Mol. Med. 46, 1074-1084. https://doi.org/10.3892/ijmm.2020.4668
  23. Peng, L., Yuan, Z., Ling, H., Fukasawa, K., Robertson, K., Olashaw, N., Koomen, J., Chen, J., Lane, W.S., and Seto, E. (2011). SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Mol. Cell. Biol. 31, 4720-4734. https://doi.org/10.1128/MCB.06147-11
  24. Qasim, M., Le, N.X.T., Nguyen, T.P.T., Chae, D.S., Park, S.J., and Lee, N.Y. (2020). Nanohybrid biodegradable scaffolds for TGF-beta3 release for the chondrogenic differentiation of human mesenchymal stem cells. Int. J. Pharm. 581, 119248. https://doi.org/10.1016/j.ijpharm.2020.119248
  25. Razawy, W., Asmawidjaja, P.S., Mus, A.M., Salioska, N., Davelaar, N., Kops, N., Oukka, M., Alves, C.H., and Lubberts, E. (2020). CD4(+) CCR6(+) T cells, but not gammadelta T cells, are important for the IL-23R-dependent progression of antigen-induced inflammatory arthritis in mice. Eur. J. Immunol. 50, 245-255. https://doi.org/10.1002/eji.201948112
  26. Tsuji, H., Miyoshi, S., Ikegami, Y., Hida, N., Asada, H., Togashi, I., Suzuki, J., Satake, M., Nakamizo, H., Tanaka, M., et al. (2010). Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circ. Res. 106, 1613-1623. https://doi.org/10.1161/CIRCRESAHA.109.205260
  27. Wu, C.C., Liu, F.L., Sytwu, H.K., Tsai, C.Y., and Chang, D.M. (2016). CD146+ mesenchymal stem cells display greater therapeutic potential than CD146- cells for treating collagen-induced arthritis in mice. Stem Cell Res. Ther. 7, 23. https://doi.org/10.1186/s13287-016-0285-4

Cited by

  1. Mesenchymal Stem Cells Suppress Severe Asthma by Directly Regulating Th2 Cells and Type 2 Innate Lymphoid Cells vol.44, pp.8, 2021, https://doi.org/10.14348/molcells.2021.0101
  2. ASC and SVF Cells Synergistically Induce Neovascularization in Ischemic Hindlimb Following Cotransplantation vol.23, pp.1, 2021, https://doi.org/10.3390/ijms23010185