Browse > Article
http://dx.doi.org/10.14348/molcells.2021.2155

Overexpression of COMP-Angiopoietin-1 in K14-Expressing Cells Impairs Hematopoiesis and Disturbs Erythrocyte Maturation  

Sim, Hyun-Jaung (Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University)
Kim, Min-Hye (Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University)
Bhattarai, Govinda (Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University)
Hwang, Jae-Won (Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University)
So, Han-Sol (Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University)
Poudel, Sher Bahadur (Department of Basic Science & Craniofacial Biology, College of Dentistry, New York University)
Cho, Eui-Sic (Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University)
Kook, Sung-Ho (Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University)
Lee, Jeong-Chae (Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University)
Abstract
Numerous studies highlight the potential benefits potentials of supplemental cartilage oligomeric matrix protein-angiopoietin-1 (COMP-Ang1) through improved angiogenic effects. However, our recent findings show that excessive overexpression of COMP-Ang1 induces an impaired bone marrow (BM) microenvironment and senescence of hematopoietic stem cells (HSCs). Here, we investigated the underlying mechanisms of how excessive COMP-Ang1 affects the function of BM-conserved stem cells and hematopoiesis using K14-Cre;inducible-COMP-Ang1-transgenic mice. Excessive COMP-Ang1 induced peripheral egression and senescence of BM HSCs and mesenchymal stem cells (MSCs). Excessive COMP-Ang1 also caused abnormal hematopoiesis along with skewed differentiation of HSCs toward myeloid lineage rather than lymphoid lineage. Especially, excessive COMP-Ang1 disturbed late-stage erythroblast maturation, followed by decreased expression of stromal cell-derived factor 1 (SDF-1) and globin transcription factor 1 (GATA-1) and increased levels of superoxide anion and p-p38 kinase. However, transplantation with the mutant-derived BM cells or treatment with rhCOMP-Ang1 protein did not alter the frequency or GATA-1 expression of erythroblasts in recipient mice or in cultured BM cells. Together, our findings suggest that excessive COMP-Ang1 impairs the functions of BM HSCs and MSCs and hematopoietic processes, eventually leading to abnormal erythropoiesis via imbalanced SDF-1/CXCR4 axis and GATA-1 expression rather than Ang1/Tie2 signaling axis alterations.
Keywords
bone marrow-conserved stem cells; cartilage oligomeric matrix protein-angiopoietin-1; globin transcription factor 1; stromal cell-derived factor 1/CXCR4 signaling axis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Takakura, N., Watanabe, T., Suenobu, S., Yamada, Y., Noda, T., Ito, Y., Satake, M., and Suda, T. (2000). A role for hematopoietic stem cells in promoting angiogenesis. Cell 102, 199-209.   DOI
2 Arai, F., Hirao, A., Ohmura, M., Sato, H., Matsuoka, S., Takubo, K., Lto, K., Koh, G.Y., and Suda, T. (2004). Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149-161.   DOI
3 Thurston, G., Suri, C., Smith, K., McClain, J., Sato, T.N., Yancopoulos, G.D., and McDonald, D.M. (1999). Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286, 2511-2514.   DOI
4 Katayama, Y., Battista, M., Kao, W.M., Hidalgo, A., Peired, A.J., Thomas, S.A., and Frenette, P.S. (2006). Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407-421.   DOI
5 Koh, G.Y. (2013). Orchestral actions of angiopoietin-1 in vascular regeneration. Trends Mol. Med. 19, 31-39.   DOI
6 de Thonel, A., Vandekerckhove, J., Lanneau, D., Selvakumar, S., Courtois, G., Hazoume, A., Brunet, M., Maurel, S., Hammann, A., Ribeil, J.A., et al. (2010). HSP27 controls GATA-1 protein level during erythroid cell differentiation. Blood 116, 85-96.
7 Ding, L. and Morrison, S.J. (2013). Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231-235.   DOI
8 Hato, T., Kimura, Y., Morisada, T., Koh, G.Y., Miyata, K., Tabata, M., Kadomatsu, T., Endo, M., Urano, T., Arai, F., et al. (2009). Angiopoietins contribute to lung development by regulating pulmonary vascular network formation. Biochem. Biophys. Res. Commun. 381, 218-223.   DOI
9 Ikushima, Y.M., Arai, F., Nakamura, Y., Hosokawa, K., Kubota, Y., Hirashima, M., Toyama, H., and Suda, T. (2013). Enhanced Angpt1/Tie2 signaling affects the differentiation and long-term repopulation ability of hematopoietic stem cells. Biochem. Biophys. Res. Commun. 430, 20-25.   DOI
10 Joo, H.J., Kim, H.S., Park, S.W., Cho, H.J., Kim, H.S., Lim, D.S., Chung, H.M., Kim, I.J., Han, Y.M., and Koh, G.Y. (2011). Angiopoietin-1 promotes endothelial differentiation from embryonic stem cells and induced pluripotent stem cells. Blood 118, 2094-2104.   DOI
11 Ferreira, R., Ohneda, K., Yamamoto, M., and Philipsen, S. (2005). GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol. Cell. Biol. 25, 1215-1227.   DOI
12 Chen, J., Kang, J.G., Keyvanfar, K., Young, N.S., and Hwang, P.M. (2016). Long-term adaptation to hypoxia preserves hematopoietic stem cell function. Exp. Hematol. 44, 866-873.   DOI
13 Zhou, B.O., Ding, L., and Morrison, S.J. (2015). Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting angiopoietin-1. Elife 4, e05521.   DOI
14 Zhou, Y., He, Y., Xing, W., Zhang, P., Shi, H., Chen, S., Shi, J., Bai, J., Rhodes, S.D., Zhang, F., et al. (2017). An abnormal bone marrow microenviornment contributes to hematopoietic dysfuction in Fanconi anemia. Haematologica 102, 1017-1027.   DOI
15 Bibikova, E., Youn, M.Y., Danilova, N., Yukako, O.U., Yoan, K.G., Ochoa, R., Narla, A., Glader, B., Lin, S., and Sakamoto, K.M. (2014). TNF-mediated inflammation represses GATA1 and activates p38 MAP kinase in RPS19-deficient hematopoietic progenitors. Blood 124, 3791-3798.
16 Boulais, P. and Frenette, P.S. (2015). Making sense of hematopoietic stem cell niches. Blood 125, 2621-2629.   DOI
17 Brindle, N.P., Saharinen, P., and Alitalo, K. (2006). Signaling and functions of angiopoietin-1 in vascular protection. Circ. Res. 98, 1014-1023.   DOI
18 Cho, C.H., Kammerer, R.A., Lee, H.J., Steinmetz, M.O., Ryu, Y.S., Lee, S.H., Yasunaga, K., Kim, K.T., Kim, I., Choi, H.H., et al. (2004). COMP-Ang1: a designed angiopoietin-1 variant with nonleaky angiogenic activity. Proc. Natl. Acad. Sci. U. S. A. 101, 5547-5552.   DOI
19 Cho, C.H., Kim, K.E., Byun, J.H., Jang, H.S., Kim, D.K., Baluk, P., Baffert, F., Lee, G.M., Mochizuki, N., Kim, J., et al. (2005). Long-term and sustained COMP-Ang1 induces long-lasting vascular enlargement and enhanced blood flow. Circ. Res. 97, 86-94.   DOI
20 Ehninger, A. and Trumpp, A. (2011). The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J. Exp. Med. 208, 421-428.   DOI
21 Zhang, J., Niu, C., Ye, L., Huang, H., He, X., Tong, W.G., Ross, J., Haug, J., Johnson, T., Feng, J.Q., et al. (2003). Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836-841.   DOI
22 Lee, J.Y., Park, D.Y., Park, D.Y., Park, I.T., Chang, W.H., Nakaoka, Y., Komuro, I., Yoo, O.J., and Koh, G.Y. (2014). Angiopoietin-1 suppresses choroidal neovascularization and vascular leakage. Invest. Ophthalmol. Vis. Sci. 55, 2191-2199.   DOI
23 Whyatt, D., Lindeboom, F., Karis, A., Ferreira, R., Milot, E., Hendriks, R., de Bruijn, M., Langeveld, A., Gribnau, J., Grosveld, F., et al. (2000). An intrinsic but cell-nonautonomous defect in GATA-1-overexpressing mouse erythroid cells. Nature 406, 519-524.   DOI
24 Whyatt, D.J., Karis, A., Harkes, I.C., Verkerk, A., Gillemans, N., Elefanty, A.G., Vairo, G., Ploemacher, R., Grosveld, F., and Philipsen, S. (1997). The level of the tissue-specific factor GATA-1 affects the cellcycle machinery. Genes Funct. 1, 11-24.   DOI
25 Youn, S.W., Lee, S.W., Lee, J., Jeong, H.K., Suh, J.W., Yoon, C.H., Kang, H.J., Kim, H.Z., Koh, G.Y., Oh, B.H., et al. (2011). COMP-Ang1 stimulates HIF-1-mediated SDF-1 overexpression and recovers ischemic injury through BM-derived progenitor cell recruitment. Blood 117, 4376-4386.   DOI
26 Yu, C., Cantor, A.B., Yang, H., Browne, C., Wells, R.A., Fujiwara, Y., and Orkin, S.H. (2002). Targeted deletion of a high-affinity GATA-binding site in the GATA1 promoter leads to selective loss of the eosinophil lineage in vivo. J. Exp. Med. 195, 1387-1395.   DOI
27 Pevny, L., Lin, C.S., D'Agati, V., Simon, M.C., Orkin, S.H., and Costantini, F. (1995). Development of hematopoietic cells lacking transcription factor GATA-1. Development 121, 163-172.   DOI
28 Dassule, H.R., Lewis, P., Bei, M., Maas, R., and McMahon, A.P. (2000). Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 127, 4775-4785.   DOI
29 Zhang, X., Sejas, D.P., Qiu, Y., Williams, D.A., and Pang, Q. (2007). Inflammatory ROS promote and cooperate with the Fanconi anemia mutation for hematopoietic senescence. J. Cell Sci. 120, 1572-1583.   DOI
30 Matte, A. and de Franceschi, L. (2019). Oxidation and erythropoiesis. Curr. Opin. Hematol. 26, 145-151.   DOI
31 Pevny, L., Simon, M.C., Robertson, E., Klein, W.H., Tsai, S.F., D'Agati, V., Orkin, S.H., and Costantini, F. (1991). Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA1. Nature 349, 257-260.   DOI
32 Soriano, P. (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70-71.   DOI
33 Suda, T., Takakura, N., and Oike, Y. (2000). Hematopoiesis and angiogenesis. Int. J. Hematol. 71, 99-107.
34 Sugiyama, T., Kohara, H., Noda, M., and Nagasawa, T. (2006). Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977-988.   DOI
35 Suri, C., McClain, J., Thurston, G., McDonald, D.M., Zhou, H., Oldmixon, E.H., Sato, T.N., and Yancopoulos, G.D. (1998). Increased vascularization in mice overexpressing angiopoietin-1. Science 282, 468-471.   DOI
36 Kusumbe, A.P., Ramasamy, S.K., and Adams, R.H. (2014). Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507, 323-328.   DOI
37 Kertesz, N., Wu, J., Chen, T.H., Sucov, H.M., and Wu, H. (2004). The role of erythropoietin in regulating angiogenesis. Dev. Biol. 276, 101-110.   DOI
38 Kook, S.H., Sim, H.J., Hwang, J.W., Baek, Y.H., Kim, C.C., Lee, J.H., Cho, E.S., and Lee, J.C. (2018). Genetic overexpression of COMP-Ang1 impairs BM microenvironment and induces senescence of BM HSCs. Biochem. Biophys. Res. Commun. 499, 669-674.   DOI
39 Kook, S.H., Yun, C.Y., Sim, H.J., Bhattarai, G., Lee, B.C., Lee, K.Y., Cho, E.S., and Lee, J.C. (2016). Smad4 in osteoblasts exerts a differential impact on HSC fate depending on osteoblast maturation stage. Leukemia 30, 2039-2046.   DOI