Acknowledgement
This study was supported by Natural Science Foundation of Chongqing, Commission of Science and Technology of Chongqing, China (cstc2019jcyj-msxmX0861).
References
- Arriaga, J.M., Levy, E.M., Bravo, A.I., Bayo, S.M., Amat, M., Aris, M., Hannois, A., Bruno, L., Roberti, M.P., Loria, F.S., et al. (2012). Metallothionein expression in colorectal cancer: relevance of different isoforms for tumor progression and patient survival. Hum. Pathol. 43, 197-208. https://doi.org/10.1016/j.humpath.2011.04.015
- Babula, P., Masarik, M., Adam, V., Eckschlager, T., Stiborova, M., Trnkova, L., Skutkova, H., Provaznik, I., Hubalek, J., and Kizek, R. (2012). Mammalian metallothioneins: properties and functions. Metallomics 4, 739-750. https://doi.org/10.1039/c2mt20081c
- Bindoli, A. and Rigobello, M.P. (2013). Principles in redox signaling: from chemistry to functional significance. Antioxid. Redox Signal. 18, 1557-1593. https://doi.org/10.1089/ars.2012.4655
- Brabletz, T., Kalluri, R., Nieto, M.A., and Weinberg, R.A. (2018). EMT in cancer. Nat. Rev. Cancer 18, 128-134. https://doi.org/10.1038/nrc.2017.118
- Cairns, R.A., Harris, I.S., and Mak, T.W. (2011). Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85-95. https://doi.org/10.1038/nrc2981
- Carter, B.J., Anklesaria, P., Choi, S., and Engelhardt, J.F. (2009). Redox modifier genes and pathways in amyotrophic lateral sclerosis. Antioxid. Redox Signal. 11, 1569-1586. https://doi.org/10.1089/ars.2008.2414
- Castaldo, S.A., Freitas, J.R., Conchinha, N.V., and Madureira, P.A. (2016). The tumorigenic roles of the cellular REDOX regulatory systems. Oxid. Med. Cell. Longev. 2016, 8413032. https://doi.org/10.1155/2016/8413032
- Changjun, L., Feizhou, H., Dezhen, P., Zhao, L., and Xianhai, M. (2018). MiR-545-3p/MT1M axis regulates cell proliferation, invasion and migration in hepatocellular carcinoma. Biomed. Pharmacother. 108, 347-354. https://doi.org/10.1016/j.biopha.2018.09.009
- Che, M., Wang, R., Li, X., Wang, H.Y., and Zheng, X.F.S. (2016). Expanding roles of superoxide dismutases in cell regulation and cancer. Drug Discov. Today 21, 143-149. https://doi.org/10.1016/j.drudis.2015.10.001
- Chen, Y., Quan, R., Bhandari, A., Chen, Z., Guan, Y., Xiang, J., You, J., and Teng, L. (2019). Low metallothionein 1M (MT1M) is associated with thyroid cancer cell lines progression. Am. J. Transl. Res. 11, 1760-1770.
- Cheng, Y., Liang, P., Geng, H., Wang, Z., Li, L., Cheng, S.H., Ying, J., Su, X., Ng, K.M., Ng, M.H., et al. (2012). A novel 19q13 nucleolar zinc finger protein suppresses tumor cell growth through inhibiting ribosome biogenesis and inducing apoptosis but is frequently silenced in multiple carcinomas. Mol. Cancer Res. 10, 925-936. https://doi.org/10.1158/1541-7786.MCR-11-0594
- Cui, Q., Wang, J.Q., Assaraf, Y.G., Ren, L., Gupta, P., Wei, L., Ashby, C.R., Jr., Yang, D.H., and Chen, Z.S. (2018). Modulating ROS to overcome multidrug resistance in cancer. Drug Resist. Updat. 41, 1-25. https://doi.org/10.1016/j.drup.2018.11.001
- D'Autreaux, B. and Toledano, M.B. (2007). ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813-824. https://doi.org/10.1038/nrm2256
- Dimayuga, F.O., Wang, C., Clark, J.M., Dimayuga, E.R., Dimayuga, V.M., and Bruce-Keller, A.J. (2007). SOD1 overexpression alters ROS production and reduces neurotoxic inflammatory signaling in microglial cells. J. Neuroimmunol. 182, 89-99. https://doi.org/10.1016/j.jneuroim.2006.10.003
- Du, H., Chen, B., Jiao, N.L., Liu, Y.H., Sun, S.Y., and Zhang, Y.W. (2020). Elevated glutathione peroxidase 2 expression promotes cisplatin resistance in lung adenocarcinoma. Oxid. Med. Cell. Longev. 2020, 7370157.
- Du, H.Y., Li, Y., Olivo, M., Yip, G.W., and Bay, B.H. (2006). Differential up-regulation of metallothionein isoforms in well-differentiated nasopharyngeal cancer cells in vitro by photoactivated hypericin. Oncol. Rep. 16, 1397-1402.
- Emri, E., Egervari, K., Varvolgyi, T., Rozsa, D., Miko, E., Dezso, B., Veres, I., Mehes, G., Emri, G., and Remenyik, E. (2013). Correlation among metallothionein expression, intratumoural macrophage infiltration and the risk of metastasis in human cutaneous malignant melanoma. J. Eur. Acad. Dermatol. Venereol. 27, e320-e327. https://doi.org/10.1111/j.1468-3083.2012.04653.x
- Ferrario, C., Lavagni, P., Gariboldi, M., Miranda, C., Losa, M., Cleris, L., Formelli, F., Pilotti, S., Pierotti, M.A., and Greco, A. (2008). Metallothionein 1G acts as an oncosupressor in papillary thyroid carcinoma. Lab. Invest. 88, 474-481. https://doi.org/10.1038/labinvest.2008.17
- Gao, L., Loveless, J., Shay, C., and Teng, Y. (2020). Targeting ROS-mediated crosstalk between autophagy and apoptosis in cancer. Adv. Exp. Med. Biol. 1260, 1-12. https://doi.org/10.1007/978-3-030-42667-5_1
- Griess, B., Tom, E., Domann, F., and Teoh-Fitzgerald, M. (2017). Extracellular superoxide dismutase and its role in cancer. Free Radic. Biol. Med. 112, 464-479. https://doi.org/10.1016/j.freeradbiomed.2017.08.013
- Hoxhaj, G. and Manning, B.D. (2020). The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74-88. https://doi.org/10.1038/s41568-019-0216-7
- Jadhav, R.R., Ye, Z., Huang, R.L., Liu, J., Hsu, P.Y., Huang, Y.W., Rangel, L.B., Lai, H.C., Roa, J.C., Kirma, N.B., et al. (2015). Genome-wide DNA methylation analysis reveals estrogen-mediated epigenetic repression of metallothionein-1 gene cluster in breast cancer. Clin. Epigenetics 7, 13. https://doi.org/10.1186/s13148-015-0045-9
- Juarez, J.C., Manuia, M., Burnett, M.E., Betancourt, O., Boivin, B., Shaw, D.E., Tonks, N.K., Mazar, A.P., and Donate, F. (2008). Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc. Natl. Acad. Sci. U. S. A. 105, 7147-7152. https://doi.org/10.1073/pnas.0709451105
- Kawahara, B., Ramadoss, S., Chaudhuri, G., Janzen, C., Sen, S., and Mascharak, P.K. (2019). Carbon monoxide sensitizes cisplatin-resistant ovarian cancer cell lines toward cisplatin via attenuation of levels of glutathione and nuclear metallothionein. J. Inorg. Biochem. 191, 29-39. https://doi.org/10.1016/j.jinorgbio.2018.11.003
- Krezel, A. and Maret, W. (2017). The functions of metamorphic metallothioneins in zinc and copper metabolism. Int. J. Mol. Sci. 18, 1237. https://doi.org/10.3390/ijms18061237
- Kumari, M.V., Hiramatsu, M., and Ebadi, M. (1998). Free radical scavenging actions of metallothionein isoforms I and II. Free Radic. Res. 29, 93-101. https://doi.org/10.1080/10715769800300111
- Lee, G.Y., Kenny, P.A., Lee, E.H., and Bissell, M.J. (2007). Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods 4, 359-365. https://doi.org/10.1038/nmeth1015
- Li, L., Ying, J., Tong, X., Zhong, L., Su, X., Xiang, T., Shu, X., Rong, R., Xiong, L., Li, H., et al. (2014). Epigenetic identification of receptor tyrosine kinase-like orphan receptor 2 as a functional tumor suppressor inhibiting beta-catenin and AKT signaling but frequently methylated in common carcinomas. Cell. Mol. Life Sci. 71, 2179-2192. https://doi.org/10.1007/s00018-013-1485-z
- Mao, J., Yu, H., Wang, C., Sun, L., Jiang, W., Zhang, P., Xiao, Q., Han, D., Saiyin, H., Zhu, J., et al. (2012). Metallothionein MT1M is a tumor suppressor of human hepatocellular carcinomas. Carcinogenesis 33, 2568-2577. https://doi.org/10.1093/carcin/bgs287
- Miles, A.T., Hawksworth, G.M., Beattie, J.H., and Rodilla, V. (2000). Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit. Rev. Biochem. Mol. Biol. 35, 35-70. https://doi.org/10.1080/10409230091169168
- Oka, D., Yamashita, S., Tomioka, T., Nakanishi, Y., Kato, H., Kaminishi, M., and Ushijima, T. (2009). The presence of aberrant DNA methylation in noncancerous esophageal mucosae in association with smoking history: a target for risk diagnosis and prevention of esophageal cancers. Cancer 115, 3412-3426. https://doi.org/10.1002/cncr.24394
- Patel, G.K., Khan, M.A., Bhardwaj, A., Srivastava, S.K., Zubair, H., Patton, M.C., Singh, S., Khushman, M., and Singh, A.P. (2017). Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK. Br. J. Cancer 116, 609-619. https://doi.org/10.1038/bjc.2017.18
- Rojo de la Vega, M., Chapman, E., and Zhang, D.D. (2018). NRF2 and the hallmarks of cancer. Cancer Cell 34, 21-43. https://doi.org/10.1016/j.ccell.2018.03.022
- Salt, M.B., Bandyopadhyay, S., and McCormick, F. (2014). Epithelial-tomesenchymal transition rewires the molecular path to PI3K-dependent proliferation. Cancer Discov. 4, 186-199. https://doi.org/10.1158/2159-8290.CD-13-0520
- Schumacker, P.T. (2015). Reactive oxygen species in cancer: a dance with the devil. Cancer Cell 27, 156-157. https://doi.org/10.1016/j.ccell.2015.01.007
- Shadel, G.S. and Horvath, T.L. (2015). Mitochondrial ROS signaling in organismal homeostasis. Cell 163, 560-569. https://doi.org/10.1016/j.cell.2015.10.001
- Si, M. and Lang, J. (2018). The roles of metallothioneins in carcinogenesis. J. Hematol. Oncol. 11, 107. https://doi.org/10.1186/s13045-018-0645-x
- Sibenaller, Z.A., Welsh, J.L., Du, C., Witmer, J.R., Schrock, H.E., Du, J., Buettner, G.R., Goswami, P.C., Cieslak, J.A., 3rd, and Cullen, J.J. (2014). Extracellular superoxide dismutase suppresses hypoxia-inducible factor1alpha in pancreatic cancer. Free Radic. Biol. Med. 69, 357-366. https://doi.org/10.1016/j.freeradbiomed.2014.02.002
- Siegel, R.L., Miller, K.D., and Jemal, A. (2020). Cancer statistics, 2020. CA Cancer J. Clin. 70, 7-30. https://doi.org/10.3322/caac.21590
- Sosa, V., Moline, T., Somoza, R., Paciucci, R., Kondoh, H., and LLeonart, M.E. (2013). Oxidative stress and cancer: an overview. Ageing Res. Rev. 12, 376-390. https://doi.org/10.1016/j.arr.2012.10.004
- Theocharis, S.E., Margeli, A.P., Klijanienko, J.T., and Kouraklis, G.P. (2004). Metallothionein expression in human neoplasia. Histopathology 45, 103-118. https://doi.org/10.1111/j.1365-2559.2004.01922.x
- Trachootham, D., Alexandre, J., and Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 8, 579-591. https://doi.org/10.1038/nrd2803
- Tsui, K.H., Hou, C.P., Chang, K.S., Lin, Y.H., Feng, T.H., Chen, C.C., Shin, Y.S., and Juang, H.H. (2019). Metallothionein 3 is a hypoxia-upregulated oncogene enhancing cell invasion and tumorigenesis in human bladder carcinoma cells. Int. J. Mol. Sci. 20, 980. https://doi.org/10.3390/ijms20040980
- West, A.K., Stallings, R., Hildebrand, C.E., Chiu, R., Karin, M., and Richards, R.I. (1990). Human metallothionein genes: structure of the functional locus at 16q13. Genomics 8, 513-518. https://doi.org/10.1016/0888-7543(90)90038-v
- Yamada, H., Yamada, Y., Adachi, T., Fukatsu, A., Sakuma, M., Futenma, A., and Kakumu, S. (2000). Protective role of extracellular superoxide dismutase in hemodialysis patients. Nephron 84, 218-223. https://doi.org/10.1159/000045580
- Ye, L., Xiang, T., Fan, Y., Zhang, D., Li, L., Zhang, C., He, X., Xiang, Q., Tao, Q., and Ren, G. (2019). The 19q13 KRAB Zinc-finger protein ZFP82 suppresses the growth and invasion of esophageal carcinoma cells through inhibiting NF-kappaB transcription and inducing apoptosis. Epigenomics 11, 65-80. https://doi.org/10.2217/epi-2018-0092
- Ye, L., Xiang, T., Zhu, J., Li, D., Shao, Q., Peng, W., Tang, J., Li, L., and Ren, G. (2018). Interferon consensus sequence-binding protein 8, a tumor suppressor, suppresses tumor growth and invasion of non-small cell lung cancer by interacting with the Wnt/beta-catenin pathway. Cell. Physiol. Biochem. 51, 961-978. https://doi.org/10.1159/000495399
- Zeng, H., Zheng, R., Zhang, S., Zuo, T., Xia, C., Zou, X., and Chen, W. (2016). Esophageal cancer statistics in China, 2011: estimates based on 177 cancer registries. Thorac. Cancer 7, 232-237. https://doi.org/10.1111/1759-7714.12322
- Zheng, Y., Jiang, L., Hu, Y., Xiao, C., Xu, N., Zhou, J., and Zhou, X. (2017). Metallothionein 1H (MT1H) functions as a tumor suppressor in hepatocellular carcinoma through regulating Wnt/beta-catenin signaling pathway. BMC Cancer 17, 161. https://doi.org/10.1186/s12885-017-3139-2
Cited by
- Metallothionein 2A Expression in Cancer-Associated Fibroblasts and Cancer Cells Promotes Esophageal Squamous Cell Carcinoma Progression vol.13, pp.18, 2021, https://doi.org/10.3390/cancers13184552