Browse > Article
http://dx.doi.org/10.14348/molcells.2021.2179

Metallothionein MT1M Suppresses Carcinogenesis of Esophageal Carcinoma Cells through Inhibition of the Epithelial-Mesenchymal Transition and the SOD1/PI3K Axis  

Li, Dandan (Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University)
Peng, Weiyan (Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University)
Wu, Bin (Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University)
Liu, Huan (Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University)
Zhang, Ruizhen (Department of Otolaryngology Head and Neck Surgery, Daping Hospital, Army Medical University)
Zhou, Ruiqin (Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University)
Yao, Lijun (Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University)
Ye, Lin (Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University)
Abstract
Metallothionein (MT1M) belongs to a family of cysteinerich cytosolic protein and has been reported to be a tumor suppressor gene in multiple cancers. However, its role in esophageal carcinoma carcinogenesis remains unclear. In this study, MT1M expression was correlated with tumor type, stage, drinking and smoking history, as well as patient survival. We also studied the regulation and biological function of MT1M in esophageal squamous cell carcinoma (ESCC). We have found that MT1M is significantly downregulated in ESCC tissues compared with adjacent non-cancer tissues. Furthermore, restoration of expression by treatment with the demethylation agent A + T showed that MT1M downregulation might be closely related to hypermethylation in its promoter region. Over-expression of MT1M in ESCC cells significantly altered cell morphology, induced apoptosis, and reduced colony formation, cell viability, migration and epithelial-mesenchymal transition. Moreover, based on reactive oxygen species (ROS) levels, a superoxide dismutase 1 (SOD1) activity assay and protein analysis, we verified that the tumor-suppressive function of MT1M was at least partially caused by its upregulation of ROS levels, downregulation of SOD1 activity and phosphorylation of the SOD1 downstream pathway PI3K/AKT. In conclusion, our results demonstrated that MT1M was a novel tumor-suppressor in ESCC and may be disrupted by promoter CpG methylation during esophageal carcinogenesis.
Keywords
esophageal squamous cell carcinoma; MT1M; PI3K/AKT; SOD1; tumor suppressor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zheng, Y., Jiang, L., Hu, Y., Xiao, C., Xu, N., Zhou, J., and Zhou, X. (2017). Metallothionein 1H (MT1H) functions as a tumor suppressor in hepatocellular carcinoma through regulating Wnt/beta-catenin signaling pathway. BMC Cancer 17, 161.   DOI
2 Arriaga, J.M., Levy, E.M., Bravo, A.I., Bayo, S.M., Amat, M., Aris, M., Hannois, A., Bruno, L., Roberti, M.P., Loria, F.S., et al. (2012). Metallothionein expression in colorectal cancer: relevance of different isoforms for tumor progression and patient survival. Hum. Pathol. 43, 197-208.   DOI
3 Babula, P., Masarik, M., Adam, V., Eckschlager, T., Stiborova, M., Trnkova, L., Skutkova, H., Provaznik, I., Hubalek, J., and Kizek, R. (2012). Mammalian metallothioneins: properties and functions. Metallomics 4, 739-750.   DOI
4 Du, H.Y., Li, Y., Olivo, M., Yip, G.W., and Bay, B.H. (2006). Differential up-regulation of metallothionein isoforms in well-differentiated nasopharyngeal cancer cells in vitro by photoactivated hypericin. Oncol. Rep. 16, 1397-1402.
5 Emri, E., Egervari, K., Varvolgyi, T., Rozsa, D., Miko, E., Dezso, B., Veres, I., Mehes, G., Emri, G., and Remenyik, E. (2013). Correlation among metallothionein expression, intratumoural macrophage infiltration and the risk of metastasis in human cutaneous malignant melanoma. J. Eur. Acad. Dermatol. Venereol. 27, e320-e327.   DOI
6 Ferrario, C., Lavagni, P., Gariboldi, M., Miranda, C., Losa, M., Cleris, L., Formelli, F., Pilotti, S., Pierotti, M.A., and Greco, A. (2008). Metallothionein 1G acts as an oncosupressor in papillary thyroid carcinoma. Lab. Invest. 88, 474-481.   DOI
7 Kawahara, B., Ramadoss, S., Chaudhuri, G., Janzen, C., Sen, S., and Mascharak, P.K. (2019). Carbon monoxide sensitizes cisplatin-resistant ovarian cancer cell lines toward cisplatin via attenuation of levels of glutathione and nuclear metallothionein. J. Inorg. Biochem. 191, 29-39.   DOI
8 Krezel, A. and Maret, W. (2017). The functions of metamorphic metallothioneins in zinc and copper metabolism. Int. J. Mol. Sci. 18, 1237.   DOI
9 Kumari, M.V., Hiramatsu, M., and Ebadi, M. (1998). Free radical scavenging actions of metallothionein isoforms I and II. Free Radic. Res. 29, 93-101.   DOI
10 Lee, G.Y., Kenny, P.A., Lee, E.H., and Bissell, M.J. (2007). Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods 4, 359-365.   DOI
11 Li, L., Ying, J., Tong, X., Zhong, L., Su, X., Xiang, T., Shu, X., Rong, R., Xiong, L., Li, H., et al. (2014). Epigenetic identification of receptor tyrosine kinase-like orphan receptor 2 as a functional tumor suppressor inhibiting beta-catenin and AKT signaling but frequently methylated in common carcinomas. Cell. Mol. Life Sci. 71, 2179-2192.   DOI
12 Mao, J., Yu, H., Wang, C., Sun, L., Jiang, W., Zhang, P., Xiao, Q., Han, D., Saiyin, H., Zhu, J., et al. (2012). Metallothionein MT1M is a tumor suppressor of human hepatocellular carcinomas. Carcinogenesis 33, 2568-2577.   DOI
13 Miles, A.T., Hawksworth, G.M., Beattie, J.H., and Rodilla, V. (2000). Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit. Rev. Biochem. Mol. Biol. 35, 35-70.   DOI
14 Oka, D., Yamashita, S., Tomioka, T., Nakanishi, Y., Kato, H., Kaminishi, M., and Ushijima, T. (2009). The presence of aberrant DNA methylation in noncancerous esophageal mucosae in association with smoking history: a target for risk diagnosis and prevention of esophageal cancers. Cancer 115, 3412-3426.   DOI
15 Cairns, R.A., Harris, I.S., and Mak, T.W. (2011). Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85-95.   DOI
16 Patel, G.K., Khan, M.A., Bhardwaj, A., Srivastava, S.K., Zubair, H., Patton, M.C., Singh, S., Khushman, M., and Singh, A.P. (2017). Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK. Br. J. Cancer 116, 609-619.   DOI
17 Rojo de la Vega, M., Chapman, E., and Zhang, D.D. (2018). NRF2 and the hallmarks of cancer. Cancer Cell 34, 21-43.   DOI
18 Salt, M.B., Bandyopadhyay, S., and McCormick, F. (2014). Epithelial-tomesenchymal transition rewires the molecular path to PI3K-dependent proliferation. Cancer Discov. 4, 186-199.   DOI
19 Bindoli, A. and Rigobello, M.P. (2013). Principles in redox signaling: from chemistry to functional significance. Antioxid. Redox Signal. 18, 1557-1593.   DOI
20 Brabletz, T., Kalluri, R., Nieto, M.A., and Weinberg, R.A. (2018). EMT in cancer. Nat. Rev. Cancer 18, 128-134.   DOI
21 Carter, B.J., Anklesaria, P., Choi, S., and Engelhardt, J.F. (2009). Redox modifier genes and pathways in amyotrophic lateral sclerosis. Antioxid. Redox Signal. 11, 1569-1586.   DOI
22 Castaldo, S.A., Freitas, J.R., Conchinha, N.V., and Madureira, P.A. (2016). The tumorigenic roles of the cellular REDOX regulatory systems. Oxid. Med. Cell. Longev. 2016, 8413032.   DOI
23 Changjun, L., Feizhou, H., Dezhen, P., Zhao, L., and Xianhai, M. (2018). MiR-545-3p/MT1M axis regulates cell proliferation, invasion and migration in hepatocellular carcinoma. Biomed. Pharmacother. 108, 347-354.   DOI
24 Sibenaller, Z.A., Welsh, J.L., Du, C., Witmer, J.R., Schrock, H.E., Du, J., Buettner, G.R., Goswami, P.C., Cieslak, J.A., 3rd, and Cullen, J.J. (2014). Extracellular superoxide dismutase suppresses hypoxia-inducible factor1alpha in pancreatic cancer. Free Radic. Biol. Med. 69, 357-366.   DOI
25 Schumacker, P.T. (2015). Reactive oxygen species in cancer: a dance with the devil. Cancer Cell 27, 156-157.   DOI
26 Shadel, G.S. and Horvath, T.L. (2015). Mitochondrial ROS signaling in organismal homeostasis. Cell 163, 560-569.   DOI
27 Si, M. and Lang, J. (2018). The roles of metallothioneins in carcinogenesis. J. Hematol. Oncol. 11, 107.   DOI
28 Sosa, V., Moline, T., Somoza, R., Paciucci, R., Kondoh, H., and LLeonart, M.E. (2013). Oxidative stress and cancer: an overview. Ageing Res. Rev. 12, 376-390.   DOI
29 Theocharis, S.E., Margeli, A.P., Klijanienko, J.T., and Kouraklis, G.P. (2004). Metallothionein expression in human neoplasia. Histopathology 45, 103-118.   DOI
30 Siegel, R.L., Miller, K.D., and Jemal, A. (2020). Cancer statistics, 2020. CA Cancer J. Clin. 70, 7-30.   DOI
31 Trachootham, D., Alexandre, J., and Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 8, 579-591.   DOI
32 Ye, L., Xiang, T., Fan, Y., Zhang, D., Li, L., Zhang, C., He, X., Xiang, Q., Tao, Q., and Ren, G. (2019). The 19q13 KRAB Zinc-finger protein ZFP82 suppresses the growth and invasion of esophageal carcinoma cells through inhibiting NF-kappaB transcription and inducing apoptosis. Epigenomics 11, 65-80.   DOI
33 Tsui, K.H., Hou, C.P., Chang, K.S., Lin, Y.H., Feng, T.H., Chen, C.C., Shin, Y.S., and Juang, H.H. (2019). Metallothionein 3 is a hypoxia-upregulated oncogene enhancing cell invasion and tumorigenesis in human bladder carcinoma cells. Int. J. Mol. Sci. 20, 980.   DOI
34 West, A.K., Stallings, R., Hildebrand, C.E., Chiu, R., Karin, M., and Richards, R.I. (1990). Human metallothionein genes: structure of the functional locus at 16q13. Genomics 8, 513-518.   DOI
35 Yamada, H., Yamada, Y., Adachi, T., Fukatsu, A., Sakuma, M., Futenma, A., and Kakumu, S. (2000). Protective role of extracellular superoxide dismutase in hemodialysis patients. Nephron 84, 218-223.   DOI
36 Ye, L., Xiang, T., Zhu, J., Li, D., Shao, Q., Peng, W., Tang, J., Li, L., and Ren, G. (2018). Interferon consensus sequence-binding protein 8, a tumor suppressor, suppresses tumor growth and invasion of non-small cell lung cancer by interacting with the Wnt/beta-catenin pathway. Cell. Physiol. Biochem. 51, 961-978.   DOI
37 Zeng, H., Zheng, R., Zhang, S., Zuo, T., Xia, C., Zou, X., and Chen, W. (2016). Esophageal cancer statistics in China, 2011: estimates based on 177 cancer registries. Thorac. Cancer 7, 232-237.   DOI
38 Jadhav, R.R., Ye, Z., Huang, R.L., Liu, J., Hsu, P.Y., Huang, Y.W., Rangel, L.B., Lai, H.C., Roa, J.C., Kirma, N.B., et al. (2015). Genome-wide DNA methylation analysis reveals estrogen-mediated epigenetic repression of metallothionein-1 gene cluster in breast cancer. Clin. Epigenetics 7, 13.   DOI
39 Griess, B., Tom, E., Domann, F., and Teoh-Fitzgerald, M. (2017). Extracellular superoxide dismutase and its role in cancer. Free Radic. Biol. Med. 112, 464-479.   DOI
40 Hoxhaj, G. and Manning, B.D. (2020). The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74-88.   DOI
41 Juarez, J.C., Manuia, M., Burnett, M.E., Betancourt, O., Boivin, B., Shaw, D.E., Tonks, N.K., Mazar, A.P., and Donate, F. (2008). Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc. Natl. Acad. Sci. U. S. A. 105, 7147-7152.   DOI
42 Gao, L., Loveless, J., Shay, C., and Teng, Y. (2020). Targeting ROS-mediated crosstalk between autophagy and apoptosis in cancer. Adv. Exp. Med. Biol. 1260, 1-12.   DOI
43 Cui, Q., Wang, J.Q., Assaraf, Y.G., Ren, L., Gupta, P., Wei, L., Ashby, C.R., Jr., Yang, D.H., and Chen, Z.S. (2018). Modulating ROS to overcome multidrug resistance in cancer. Drug Resist. Updat. 41, 1-25.   DOI
44 Che, M., Wang, R., Li, X., Wang, H.Y., and Zheng, X.F.S. (2016). Expanding roles of superoxide dismutases in cell regulation and cancer. Drug Discov. Today 21, 143-149.   DOI
45 Chen, Y., Quan, R., Bhandari, A., Chen, Z., Guan, Y., Xiang, J., You, J., and Teng, L. (2019). Low metallothionein 1M (MT1M) is associated with thyroid cancer cell lines progression. Am. J. Transl. Res. 11, 1760-1770.
46 Cheng, Y., Liang, P., Geng, H., Wang, Z., Li, L., Cheng, S.H., Ying, J., Su, X., Ng, K.M., Ng, M.H., et al. (2012). A novel 19q13 nucleolar zinc finger protein suppresses tumor cell growth through inhibiting ribosome biogenesis and inducing apoptosis but is frequently silenced in multiple carcinomas. Mol. Cancer Res. 10, 925-936.   DOI
47 D'Autreaux, B. and Toledano, M.B. (2007). ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813-824.   DOI
48 Dimayuga, F.O., Wang, C., Clark, J.M., Dimayuga, E.R., Dimayuga, V.M., and Bruce-Keller, A.J. (2007). SOD1 overexpression alters ROS production and reduces neurotoxic inflammatory signaling in microglial cells. J. Neuroimmunol. 182, 89-99.   DOI
49 Du, H., Chen, B., Jiao, N.L., Liu, Y.H., Sun, S.Y., and Zhang, Y.W. (2020). Elevated glutathione peroxidase 2 expression promotes cisplatin resistance in lung adenocarcinoma. Oxid. Med. Cell. Longev. 2020, 7370157.