DOI QR코드

DOI QR Code

A Review of HLA Genes in Pharmacogenetics: Risk Assessment of Adverse Drug Reactions

  • Yu, Shinae (Department of Laboratory Medicine, Haeundae Paik Hospital, Inje University College of Medicine)
  • Received : 2020.09.04
  • Accepted : 2020.10.20
  • Published : 2021.04.30

Abstract

Adverse drug reactions (ADRs) is a hypersensitivity reactions to specific medications, and remain a common and major problem in healthcare. ADRs suchc as drug-induced liver injury and life-threatening severe cutaneous adverse drug reactions including Stevens-Johnson syndrome, toxic epidermal necrolysis, and drug rash with eosinophilia and systemic symptoms can be occurred by uncontrolled expansion of oligoclonal T cells according to genetically predisposing HLA. In this review, I summarized the alleles of HLA genes which have been proposed to have association with ADRs caused by different drugs.

Keywords

References

  1. Dausset J. The major histocompatibility complex in man. Science 1981;213:1469-74. https://doi.org/10.1126/science.6792704
  2. Shiina T, Inoko H, Kulski JK. An update of the HLA genomic region, locus information and disease associations: 2004. Tissue Antigens 2004;64:631-49. https://doi.org/10.1111/j.1399-0039.2004.00327.x
  3. Bjorkman PJ, Parham P. Structure, function, and diversity of class I major histocompatibility complex molecules. Annu Rev Biochem 1990;59:253-88. https://doi.org/10.1146/annurev.bi.59.070190.001345
  4. Glimcher LH, Kara CJ. Sequences and factors: a guide to MHC class-II transcription. Annu Rev Immunol 1992;10:13-49. https://doi.org/10.1146/annurev.iy.10.040192.000305
  5. Guardiola J, Maffei A. Control of MHC class II gene expression in autoimmune, infectious, and neoplastic diseases. Crit Rev Immunol 1993;13:247-68.
  6. Petersdorf EW, Gooley TA, Anasetti C, Martin PJ, Smith AG, Mickelson EM, et al. Optimizing outcome after unrelated marrow transplantation by comprehensive matching of HLA class I and II alleles in the donor and recipient. Blood 1998;92:3515-20. https://doi.org/10.1182/blood.v92.10.3515.422k49_3515_3520
  7. Opelz G, Wujciak T, Dohler B, Scherer S, Mytilineos J. HLA compatibility and organ transplant survival. Collaborative Transplant Study. Rev Immunogenet 1999;1:334-42.
  8. Pompeu YA, Stewart JD, Mallal S, Phillips E, Peters B, Ostrov DA. The structural basis of HLA-associated drug hypersensitivity syndromes. Immunol Rev 2012;250:158-66. https://doi.org/10.1111/j.1600-065X.2012.01163.x
  9. Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, Ho HC, et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature 2004;428:486. https://doi.org/10.1038/428486a
  10. Chung WH, Hung SI, Chen YT. Human leukocyte antigens and drug hypersensitivity. Curr Opin Allergy Clin Immunol 2007;7:317-23. https://doi.org/10.1097/ACI.0b013e3282370c5f
  11. Chessman D, Kostenko L, Lethborg T, Purcell AW, Williamson NA, Chen Z, et al. Human leukocyte antigen class I-restricted activation of CD8+ T cells provides the immunogenetic basis of a systemic drug hypersensitivity. Immunity 2008;28:822-32. https://doi.org/10.1016/j.immuni.2008.04.020
  12. MD Rawlins, JW Thompson. Pathogenesis of adverse drug reactions Davies DM (Ed.), Textbook of adverse drug reactions, Oxford University Press, Oxford (1977), p. 10.
  13. Weiss ME, Adkinson NF. Immediate hypersensitivity reactions to penicillin and related antibiotics. Clin Allergy 1988;18:515-40. https://doi.org/10.1111/j.1365-2222.1988.tb02904.x
  14. Pichler WJ. Pharmacological interaction of drugs with antigenspecific immune receptors: the p-i concept. Curr Opin Allergy Clin Immunol 2002;2:301-5. https://doi.org/10.1097/00130832-200208000-00003
  15. Brander C, Mauri-Hellweg D, Bettens F, Rolli H, Goldman M, Pichler WJ. Heterogeneous T cell responses to beta-lactam-modified self-structures are observed in penicillin-allergic individuals. J Immunol 1995;155:2670-8.
  16. Watkins S, Pichler WJ. Sulfamethoxazole induces a switch mechanism in T cell receptors containing TCRVbeta20-1, altering pHLA recognition. PLoS One 2013;8:e76211. https://doi.org/10.1371/journal.pone.0076211
  17. Pavlos R, Mallal S, Ostrov D, Buus S, Metushi I, Peters B, et al. T cell-mediated hypersensitivity reactions to drugs. Annu Rev Med 2015;66:439-54. https://doi.org/10.1146/annurev-med-050913-022745
  18. Illing PT, Vivian JP, Dudek NL, Kostenko L, Chen Z, Bharadwaj M, et al. Immune self-reactivity triggered by drug-modified HLApeptide repertoire. Nature 2012;486:554-8. https://doi.org/10.1038/nature11147
  19. Nelson MR, Bacanu SA, Mosteller M, Li L, Bowman CE, Roses AD, et al. Genome-wide approaches to identify pharmacogenetic contributions to adverse drug reactions. Pharmacogenomics J 2009;9:23-33. https://doi.org/10.1038/tpj.2008.4
  20. Park BL, Kim TH, Kim JH, Bae JS, Pasaje CF, Cheong HS, et al. Genome-wide association study of aspirin-exacerbated respiratory disease in a Korean population. Hum Genet 2013;132:313-21. https://doi.org/10.1007/s00439-012-1247-2
  21. Carr DF, Chaponda M, Jorgensen AL, Castro EC, van Oosterhout JJ, Khoo SH, et al. Association of human leukocyte antigen alleles and nevirapine hypersensitivity in a Malawian HIV-infected population. Clin Infect Dis 2013;56:1330-9. https://doi.org/10.1093/cid/cit021
  22. McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperaviciute D, Carrington M, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med 2011;364:1134-43. https://doi.org/10.1056/NEJMoa1013297
  23. Rattanavipapong W, Koopitakkajorn T, Praditsitthikorn N, Mahasirimongkol S, Teerawattananon Y. Economic evaluation of HLA-B*15:02 screening for carbamazepine-induced severe adverse drug reactions in Thailand. Epilepsia 2013;54:1628-38. https://doi.org/10.1111/epi.12325
  24. Ghattaoraya GS, Dundar Y, Gonzalez-Galarza FF, Maia MH, Santos EJ, da Silva AL, et al. A web resource for mining HLA associations with adverse drug reactions: HLA-ADR. Database (Oxford) 2016;2016.
  25. Hetherington S, McGuirk S, Powell G, Cutrell A, Naderer O, Spreen B, et al. Hypersensitivity reactions during therapy with the nucleoside reverse transcriptase inhibitor abacavir. Clin Ther 2001;23:1603-14. https://doi.org/10.1016/S0149-2918(01)80132-6
  26. Bossi P, Roujeau JC, Bricaire F, Caumes E. Stevens-Johnson syndrome associated with abacavir therapy. Clin Infect Dis 2002;35:902.
  27. Pahk R, Azu MC, Taira BR, Sandoval S. Antiretroviral-induced toxic epidermal necrolysis in a patient positive for human immunodeficiency virus. Clin Exp Dermatol 2009;34:e775-7. https://doi.org/10.1111/j.1365-2230.2009.03508.x
  28. Mallal S, Nolan D, Witt C, Masel G, Martin AM, Moore C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 2002;359:727-32. https://doi.org/10.1016/S0140-6736(02)07873-X
  29. Hetherington S, Hughes AR, Mosteller M, Shortino D, Baker KL, Spreen W, et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 2002;359:1121-2. https://doi.org/10.1016/S0140-6736(02)08158-8
  30. Hughes DA, Vilar FJ, Ward CC, Alfirevic A, Park BK, Pirmohamed M. Cost-effectiveness analysis of HLA B*5701 genotyping in preventing abacavir hypersensitivity. Pharmacogenetics 2004;14:335-42. https://doi.org/10.1097/00008571-200406000-00002
  31. Stekler J, Maenza J, Stevens C, Holte S, Malhotra U, McElrath MJ, et al. Abacavir hypersensitivity reaction in primary HIV infection. AIDS 2006;20:1269-74. https://doi.org/10.1097/01.aids.0000232234.19006.a2
  32. Rodriguez-Novoa S, Garcia-Gasco P, Blanco F, Gonzalez-Pardo G, Castellares C, Moreno V, et al. Value of the HLA-B*5701 allele to predict abacavir hypersensitivity in Spaniards. AIDS Res Hum Retroviruses 2007;23:1374-6. https://doi.org/10.1089/aid.2006.0244
  33. Almeida CA, Martin AM, Nolan D, Lucas A, Cameron PU, James I, et al. Cytokine profiling in abacavir hypersensitivity patients. Antivir Ther 2008;13:281-8. https://doi.org/10.1177/135965350801300202
  34. Rauch A, Nolan D, Thurnheer C, Fux CA, Cavassini M, Chave JP, et al. Refining abacavir hypersensitivity diagnoses using a structured clinical assessment and genetic testing in the Swiss HIV Cohort Study. Antivir Ther 2008;13:1019-28. https://doi.org/10.1177/135965350801300814
  35. Berka N, Gill JM, Liacini A, O'Bryan T, Khan FM. Human leukocyte antigen (HLA) and pharmacogenetics: screening for HLAB*57:01 among human immunodeficiency virus-positive patients from southern Alberta. Hum Immunol 2012;73:164-7.
  36. Mounzer K, Hsu R, Fusco JS, Brunet L, Henegar CE, Vannappagari V, et al. HLA-B*57:01 screening and hypersensitivity reaction to abacavir between 1999 and 2016 in the OPERA((R)) observational database: a cohort study. AIDS Res Ther 2019;16:1. https://doi.org/10.1186/s12981-019-0217-3
  37. Wortmann RL. Gout and hyperuricemia. Curr Opin Rheumatol 2002;14:281-6. https://doi.org/10.1097/00002281-200205000-00015
  38. Roujeau JC, Kelly JP, Naldi L, Rzany B, Stern RS, Anderson T, et al. Medication use and the risk of Stevens-Johnson syndrome or toxic epidermal necrolysis. N Engl J Med 1995;333:1600-7. https://doi.org/10.1056/NEJM199512143332404
  39. Chung WH, Chang WC, Stocker SL, Juo CG, Graham GG, Lee MH, et al. Insights into the poor prognosis of allopurinol-induced severe cutaneous adverse reactions: the impact of renal insufficiency, high plasma levels of oxypurinol and granulysin. Ann Rheum Dis 2015;74:2157-64. https://doi.org/10.1136/annrheumdis-2014-205577
  40. Hung SI, Chung WH, Liou LB, Chu CC, Lin M, Huang HP, et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci U S A 2005;102:4134-9. https://doi.org/10.1073/pnas.0409500102
  41. Lonjou C, Borot N, Sekula P, Ledger N, Thomas L, Halevy S, et al. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics 2008;18:99-107. https://doi.org/10.1097/FPC.0b013e3282f3ef9c
  42. Kaniwa N, Saito Y, Aihara M, Matsunaga K, Tohkin M, Kurose K, et al. HLA-B locus in Japanese patients with anti-epileptics and allopurinol-related Stevens-Johnson syndrome and toxic epidermal necrolysis. Pharmacogenomics 2008;9:1617-22. https://doi.org/10.2217/14622416.9.11.1617
  43. Niihara H, Kaneko S, Ito T, Sugamori T, Takahashi N, Kohno K, et al. HLA-B*58:01 strongly associates with allopurinol-induced adverse drug reactions in a Japanese sample population. J Dermatol Sci 2013;71:150-2. https://doi.org/10.1016/j.jdermsci.2013.04.013
  44. Tassaneeyakul W, Jantararoungtong T, Chen P, Lin PY, Tiamkao S, Khunarkornsiri U, et al. Strong association between HLAB*5801 and allopurinol-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in a Thai population. Pharmacogenet Genomics 2009;19:704-9. https://doi.org/10.1097/FPC.0b013e328330a3b8
  45. Sukasem C, Jantararoungtong T, Kuntawong P, Puangpetch A, Koomdee N, Satapornpong P, et al. HLA-B (*) 58:01 for Allopurinol-Induced Cutaneous Adverse Drug Reactions: Implication for Clinical Interpretation in Thailand. Front Pharmacol 2016;7:186.
  46. Kang HR, Jee YK, Kim YS, Lee CH, Jung JW, Kim SH, et al. Positive and negative associations of HLA class I alleles with allopurinol-induced SCARs in Koreans. Pharmacogenet Genomics 2011;21:303-7. https://doi.org/10.1097/FPC.0b013e32834282b8
  47. Park HJ, Kim YJ, Kim DH, Kim J, Park KH, Park JW, et al. HLA Allele Frequencies in 5802 Koreans: Varied Allele Types Associated with SJS/TEN According to Culprit Drugs. Yonsei Med J 2016;57:118-26. https://doi.org/10.3349/ymj.2016.57.1.118
  48. Cristallo AF, Schroeder J, Citterio A, Santori G, Ferrioli GM, Rossi U, et al. A study of HLA class I and class II 4-digit allele level in Stevens-Johnson syndrome and toxic epidermal necrolysis. Int J Immunogenet 2011;38:303-9. https://doi.org/10.1111/j.1744-313X.2011.01011.x
  49. Goncalo M, Coutinho I, Teixeira V, Gameiro AR, Brites MM, Nunes R, et al. HLA-B*58:01 is a risk factor for allopurinol-induced DRESS and Stevens-Johnson syndrome/toxic epidermal necrolysis in a Portuguese population. Br J Dermatol 2013;169:660-5. https://doi.org/10.1111/bjd.12389
  50. Chiu ML, Hu M, Ng MH, Yeung CK, Chan JC, Chang MM, et al. Association between HLA-B*58:01 allele and severe cutaneous adverse reactions with allopurinol in Han Chinese in Hong Kong. Br J Dermatol 2012;167:44-9. https://doi.org/10.1111/j.1365-2133.2012.10894.x
  51. Cao ZH, Wei ZY, Zhu QY, Zhang JY, Yang L, Qin SY, et al. HLAB*58:01 allele is associated with augmented risk for both mild and severe cutaneous adverse reactions induced by allopurinol in Han Chinese. Pharmacogenomics 2012;13:1193-201. https://doi.org/10.2217/pgs.12.89
  52. Ng CY, Yeh YT, Wang CW, Hung SI, Yang CH, Chang YC, et al. Impact of the HLA-B(*)58:01 Allele and Renal Impairment on Allopurinol-Induced Cutaneous Adverse Reactions. J Invest Dermatol 2016;136:1373-81. https://doi.org/10.1016/j.jid.2016.02.808
  53. Wu X, Yang F, Chen S, Xiong H, Zhu Q, Gao X, et al. Clinical, Viral and Genetic Characteristics of Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) in Shanghai, China. Acta Derm Venereol 2018;98:401-5. https://doi.org/10.2340/00015555-2867
  54. Khanna D, Fitzgerald JD, Khanna PP, Bae S, Singh MK, Neogi T, et al. 2012 American College of Rheumatology guidelines for management of gout. Part 1: systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res (Hoboken) 2012;64:1431-46. https://doi.org/10.1002/acr.21772
  55. Maan JS, Duong Tv H, Saadabadi A. Carbamazepine. In: StatPearls. Treasure Island (FL), 2020.
  56. Hung SI, Chung WH, Jee SH, Chen WC, Chang YT, Lee WR, et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genomics 2006;16:297-306. https://doi.org/10.1097/01.fpc.0000199500.46842.4a
  57. Cheung YK, Cheng SH, Chan EJ, Lo SV, Ng MH, Kwan P. HLA-B alleles associated with severe cutaneous reactions to antiepileptic drugs in Han Chinese. Epilepsia 2013;54:1307-14. https://doi.org/10.1111/epi.12217
  58. Hsiao YH, Hui RC, Wu T, Chang WC, Hsih MS, Yang CH, et al. Genotype-phenotype association between HLA and carbamazepine-induced hypersensitivity reactions: strength and clinical correlations. J Dermatol Sci 2014;73:101-9. https://doi.org/10.1016/j.jdermsci.2013.10.003
  59. Leckband SG, Kelsoe JR, Dunnenberger HM, George AL, Jr., Tran E, Berger R, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for HLA-B genotype and carbamazepine dosing. Clin Pharmacol Ther 2013;94:324-8. https://doi.org/10.1038/clpt.2013.103
  60. Ramachandran R and Kakar S. Histological patterns in drug-induced liver disease. J Clin Pathol 2009;62:481-92. https://doi.org/10.1136/jcp.2008.058248
  61. Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe'er I, Floratos A, et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 2009;41:816-9. https://doi.org/10.1038/ng.379
  62. Colombo S, Rauch A, Rotger M, Fellay J, Martinez R, Fux C, et al. The HCP5 single-nucleotide polymorphism: a simple screening tool for prediction of hypersensitivity reaction to abacavir. J Infect Dis 2008;198:864-7. https://doi.org/10.1086/591184
  63. Wuillemin N, Adam J, Fontana S, Krahenbuhl S, Pichler WJ, Yerly D. HLA haplotype determines hapten or p-i T cell reactivity to flucloxacillin. J Immunol 2013;190:4956-64. https://doi.org/10.4049/jimmunol.1202949
  64. Ostrov DA, Grant BJ, Pompeu YA, Sidney J, Harndahl M, Southwood S, et al. Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc Natl Acad Sci U S A 2012;109:9959-64. https://doi.org/10.1073/pnas.1207934109
  65. Hershfield MS, Callaghan JT, Tassaneeyakul W, Mushiroda T, Thorn CF, Klein TE, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for human leukocyte antigen-B genotype and allopurinol dosing. Clin Pharmacol Ther 2013;93:153-8. https://doi.org/10.1038/clpt.2012.209