DOI QR코드

DOI QR Code

Maturity-onset Diabetes of the Young: Update on Diagnosis and Treatment

  • Jang, Kyung Mi (Department of Pediatrics, Yeungnam University College of Medicine)
  • Received : 2020.09.18
  • Accepted : 2020.10.21
  • Published : 2021.04.30

Abstract

Maturity-onset diabetes of the young (MODY) is characterized by a heterogeneous group of monogenic diabetes. MODY has autosomal dominant inheritance, a primary defect in pancreatic β-cell, and an early onset. Discriminating MODY from type 1 or type 2 diabetes is often challenging at first. To date, 14 different disease causing mutations have been identified in MODY patients worldwide. Targeted DNA sequencing is the gold standard to diagnose MODY and their asymptomatic relatives. Next-generation sequencing may help successfully to diagnose MODY patients and identify new MODY genes. In this review, the current perspectives on diagnosis and treatment of MODY and discrepancy in the disease-causing mutations between the Asian and Caucasian patients with MODY are summarized.

Keywords

References

  1. Tattersall RB. Mild Familial Diabetes with Dominant Inheritance. QJM: An International Journal of Medicine 1974;43:339-57.
  2. Yang Y, Chan L. Monogenic Diabetes: what it teaches us on the common forms of type 1 and type 2 diabetes. Endocr Rev 2016;37:190-222. https://doi.org/10.1210/er.2015-1116
  3. Ellard S, Bellanne-Chantelot C, Hattersley AT. European Molecular Genetics Quality Network Mg: Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia 2008;51:546-53. https://doi.org/10.1007/s00125-008-0942-y
  4. Froguel P, Vaxillaire M, Sun F, Velho G, Zouali H, Butel MO, et al. Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature 1992;356:162-4. https://doi.org/10.1038/356162a0
  5. Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox NJ, et al. Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1). Nature 1996;384:458-60. https://doi.org/10.1038/384458a0
  6. Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN, et al. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet 1997;17:384-5. https://doi.org/10.1038/ng1297-384
  7. Henzen C. Monogenic diabetes mellitus due to defects in insulin secretion. Swiss medical weekly 2012;142:w13690.
  8. Prudente S, Jungtrakoon P, Marucci A, Ludovico O, Buranasupkajorn P, Mazza T, et al. Loss-of-function mutations in APPL1 in familial diabetes mellitus. American Journal of Human Genetics 2015;97:177-85. https://doi.org/10.1016/j.ajhg.2015.05.011
  9. Shim YJ, Kim JE, Hwang SK, Choi BS, Choi BH, Cho EM, et al. Identification of candidate gene variants in Korean MODY families by whole-exome sequencing. Hormone Research in Paediatrics 2015;83:242-51. https://doi.org/10.1159/000368657
  10. Shepherd M, Shields B, Hammersley S, Hudson M, McDonald TJ, Colclough K, et al. Systematic population screening, using biomarkers and genetic testing, identifies 2.5% of the U.K. Pediatric Diabetes Population With Monogenic Diabetes. Diabetes Care 2016;39:1879-88. https://doi.org/10.2337/dc16-0645
  11. Urakami T. Maturity-onset diabetes of the young (MODY): current perspectives on diagnosis and treatment. Diabetes Metab Syndr Obes 2019;12:1047-56. https://doi.org/10.2147/DMSO.S179793
  12. Thanabalasingham G, Pal A, Selwood MP, Dudley C, Fisher K, Bingley PJ, et al. Systematic assessment of etiology in adults with a clinical diagnosis of young-onset type 2 diabetes is a successful strategy for identifying maturity-onset diabetes of the young. Diabetes Care 2012;35:1206-12. https://doi.org/10.2337/dc11-1243
  13. Kim SH. Maturity-onset diabetes of the young: what do clinicians need to know? Diabetes & Metabolism Journal 2015;39:468-77. https://doi.org/10.4093/dmj.2015.39.6.468
  14. Kavvoura FK, Owen KR. Maturity onset diabetes of the young: clinical characteristics, diagnosis and management. Pediatr Endocrinol Rev 2012;10:234-42.
  15. Yorifuji T, Fujimaru R, Hosokawa Y, Tamagawa N, Shiozaki M, Aizu K, et al. Comprehensive molecular analysis of Japanese patients with pediatric-onset MODY-type diabetes mellitus. Pediatr Diabetes 2012;13:26-32. https://doi.org/10.1111/j.1399-5448.2011.00827.x
  16. Colclough K, Bellanne-Chantelot C, Saint-Martin C, Flanagan SE, Ellard S. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha and 4 alpha in maturity-onset diabetes of the young and hyperinsulinemic hypoglycemia. Human Mutation 2013;34:669-85. https://doi.org/10.1002/humu.22279
  17. Ellard S, Colclough K. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha (HNF1A) and 4 alpha (HNF4A) in maturity-onset diabetes of the young. Human Mutation 2006;27:854-69. https://doi.org/10.1002/humu.20357
  18. Kim KA, Kang K, Chi YI, Chang I, Lee MK, Kim KW, et al. Identification and functional characterization of a novel mutation of hepatocyte nuclear factor-1alpha gene in a Korean family with MODY3. Diabetologia 2003;46:721-7. https://doi.org/10.1007/s00125-003-1079-7
  19. Shepherd M, Ellis I, Ahmad AM, Todd PJ, Bowen-Jones D, Mannion G, et al. Predictive genetic testing in maturity-onset diabetes of the young (MODY). Diabet Med 2001;18:417-21. https://doi.org/10.1046/j.1464-5491.2001.00447.x
  20. Pontoglio M, Prie D, Cheret C, Doyen A, Leroy C, Froguel P, et al. HNF1alpha controls renal glucose reabsorption in mouse and man. EMBO reports 2000;1:359-65. https://doi.org/10.1093/embo-reports/kvd071
  21. Steele AM, Shields BM, Shepherd M, Ellard S, Hattersley AT, Pearson ER. Increased all-cause and cardiovascular mortality in monogenic diabetes as a result of mutations in the HNF1A gene. Diabet Med 2010;27:157-61. https://doi.org/10.1111/j.1464-5491.2009.02913.x
  22. Pearson ER, Pruhova S, Tack CJ, Johansen A, Castleden HAJ, Lumb PJ, et al. Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4α mutations in a large European collection. Diabetologia 200;48:878-85. https://doi.org/10.1007/s00125-005-1738-y
  23. Pearson ER, Starkey BJ, Powell RJ, Gribble FM, Clark PM, Hattersley AT. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 2003;362:1275-81. https://doi.org/10.1016/S0140-6736(03)14571-0
  24. Osbak KK, Colclough K, Saint-Martin C, Beer NL, Bellanne-Chantelot C, Ellard S, et al. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Human Mutation 2009;30:1512-26. https://doi.org/10.1002/humu.21110
  25. Steele AM, Wensley KJ, Ellard S, Murphy R, Shepherd M, Colclough K, et al. Use of HbA1c in the Identification of Patients with Hyperglycaemia Caused by a Glucokinase Mutation: Observational Case Control Studies. PLoS ONE 2013;8:e65326. https://doi.org/10.1371/journal.pone.0065326
  26. Feigerlova E, Pruhova S, Dittertova L, Lebl J, Pinterova D, Kolostova K, et al. Aetiological heterogeneity of asymptomatic hyperglycaemia in children and adolescents. Eur J Pediatr 2006;165:446-52. https://doi.org/10.1007/s00431-006-0106-3
  27. Estalella I, Rica I, Perez de Nanclares G, Bilbao JR, Vazquez JA, San Pedro JI, et al. Mutations in GCK and HNF-1alpha explain the majority of cases with clinical diagnosis of MODY in Spain. Clin Endocrinol (Oxf) 2007;67:538-46. https://doi.org/10.1111/j.1365-2265.2007.02921.x
  28. Codner E, Rocha A, Deng L, Martinez-Aguayo A, Godoy C, Mericq V, et al. Mild fasting hyperglycemia in children: high rate of glucokinase mutations and some risk of developing type 1 diabetes mellitus. Pediatr Diabetes 2009;10:382-8. https://doi.org/10.1111/j.1399-5448.2009.00499.x
  29. Hwang JS. MODY Syndrome. J Korean Soc Pediatr Endocrinol 2010;15:1-6.
  30. Xu JY, Dan QH, Chan V, Wat NM, Tam S, Tiu SC, et al. Genetic and clinical characteristics of maturity-onset diabetes of the young in Chinese patients. European journal of human genetics: EJHG 2005;13:422-7. https://doi.org/10.1038/sj.ejhg.5201347
  31. Hattersley A, Bruining J, Shield J, Njolstad P, Donaghue KC. The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 2009;10(Suppl 12):33-42.
  32. Stoffel M, Duncan SA. The maturity-onset diabetes of the young (MODY1) transcription factor HNF4alpha regulates expression of genes required for glucose transport and metabolism. Proceedings of the National Academy of Sciences of the United States of America 1997;94:13209-14. https://doi.org/10.1073/pnas.94.24.13209
  33. Frayling TM, Evans JC, Bulman MP, Pearson E, Allen L, Owen K, et al. beta-cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors. Diabetes 2001;50 (Suppl 1):S94-100. https://doi.org/10.2337/diabetes.50.2007.S94
  34. Lehto M, Bitzen PO, Isomaa B, Wipemo C, Wessman Y, Forsblom C, et al. Mutation in the HNF-4alpha gene affects insulin secretion and triglyceride metabolism. Diabetes 1999;48:423. https://doi.org/10.2337/diabetes.48.2.423
  35. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 1997;15:106-10. https://doi.org/10.1038/ng0197-106
  36. Schwitzgebel VM, Mamin A, Brun T, Ritz-Laser B, Zaiko M, Maret A, et al. Agenesis of human pancreas due to decreased half-life of insulin promoter factor 1. J Clin Endocrinol Metab 2003;88:4398-406. https://doi.org/10.1210/jc.2003-030046
  37. Barbacci E, Reber M, Ott MO, Breillat C, Huetz F, Cereghini S. Variant hepatocyte nuclear factor 1 is required for visceral endoderm specification. Development (Cambridge, England) 1999;126:4795-805. https://doi.org/10.1242/dev.126.21.4795
  38. Bingham C, Ellard S, Allen L, Bulman M, Shepherd M, Frayling T, et al. Abnormal nephron development associated with a frameshift mutation in the transcription factor hepatocyte nuclear factor-1 beta. Kidney Int 2000;57:898-907. https://doi.org/10.1046/j.1523-1755.2000.057003898.x
  39. Edghill EL, Oram RA, Owens M, Stals KL, Harries LW, Hattersley AT, et al. Hepatocyte nuclear factor-1beta gene deletions--a common cause of renal disease. Nephrol Dial Transplant 2008;23:627-35. https://doi.org/10.1093/ndt/gfm603
  40. Bingham C, Bulman MP, Ellard S, Allen LI, Lipkin GW, Hoff WG, et al. Mutations in the hepatocyte nuclear factor-1beta gene are associated with familial hypoplastic glomerulocystic kidney disease. American Journal of Human Genetics 2001;68:219-24. https://doi.org/10.1086/316945
  41. Chen YZ, Gao Q, Zhao XZ, Chen YZ, Bennett CL, Xiong XS, et al. Systematic review of TCF2 anomalies in renal cysts and diabetes syndrome/maturity onset diabetes of the young type 5. Chinese Medical Journal 2010;123:3326-33.
  42. Kim EK, Lee JS, Cheong HI, Chung SS, Kwak SH, Park KS. Identification and functional characterization of P159L mutation in HNF1B in a family with maturity-onset diabetes of the young 5 (MODY5). Genomics & Informatics 2014;12:240-6. https://doi.org/10.5808/GI.2014.12.4.240
  43. Ellard S, Lango Allen H, De Franco E, Flanagan SE, Hysenaj G, Colclough K, et al. Improved genetic testing for monogenic diabetes using targeted next-generation sequencing. Diabetologia 2013;56:1958-63. https://doi.org/10.1007/s00125-013-2962-5
  44. Malecki MT, Jhala US, Antonellis A, Fields L, Doria A, Orban T, et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet 1999;23:323-8. https://doi.org/10.1038/15500
  45. Gonsorcikova L, Pruhova S, Cinek O, Ek J, Pelikanova T, Jorgensen T, et al. Autosomal inheritance of diabetes in two families characterized by obesity and a novel H241Q mutation in NEUROD1. Pediatr Diabetes 2008;9(4 Pt 2):367-72. https://doi.org/10.1111/j.1399-5448.2008.00379.x
  46. Vaxillaire M, Froguel P. Monogenic diabetes in the young, pharmacogenetics and relevance to multifactorial forms of type 2 diabetes. Endocr Rev 2008;29:254-64. https://doi.org/10.1210/er.2007-0024
  47. Hattersley AT, Greeley SAW, Polak M, Rubio-Cabezas O, Njolstad PR, Mlynarski W, et al. ISPAD Clinical Practice Consensus Guidelines 2018: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 2018;19 Suppl 27:47-63. https://doi.org/10.1111/pedi.12772
  48. Shields BM, McDonald TJ, Ellard S, Campbell MJ, Hyde C, Hattersley AT. The development and validation of a clinical prediction model to determine the probability of MODY in patients with young-onset diabetes. Diabetologia 2012;55:1265-72. https://doi.org/10.1007/s00125-011-2418-8
  49. Carroll RW, Murphy R. Monogenic diabetes: a diagnostic algorithm for clinicians. Genes (Basel) 2013;4:522-35. https://doi.org/10.3390/genes4040522
  50. Park SS, Jang SS, Ahn CH, Kim JH, Jung HS, Cho YM, et al. Identifying Pathogenic Variants of Monogenic Diabetes Using Targeted Panel Sequencing in an East Asian Population. J Clin Endocrinol Metab 2019.
  51. Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia 2010;53:2504-8. https://doi.org/10.1007/s00125-010-1799-4
  52. Hwang JS, Shin CH, Yang SW, Jung SY, Huh N. Genetic and clinical characteristics of Korean maturity-onset diabetes of the young (MODY) patients. Diabetes Res Clin Pract 2006;74:75-81. https://doi.org/10.1016/j.diabres.2006.03.002
  53. Nishigori H, Yamada S, Kohama T, Utsugi T, Shimizu H, Takeuchi T, et al. Mutations in the hepatocyte nuclear factor-1 alpha gene (MODY3) are not a major cause of early-onset non-insulindependent (type 2) diabetes mellitus in Japanese. J Hum Genet 1998;43:107-10. https://doi.org/10.1007/s100380050049
  54. Iwasaki N, Oda N, Ogata M, Hara M, Hinokio Y, Oda Y, et al. Mutations in the hepatocyte nuclear factor-1alpha/MODY3 gene in Japanese subjects with early- and late-onset NIDDM. Diabetes 1997;46:1504-8. https://doi.org/10.2337/diabetes.46.9.1504
  55. Yamagata K, Nammo T, Moriwaki M, Ihara A, Iizuka K, Yang Q, et al. Overexpression of dominant-negative mutant hepatocyte nuclear fctor-1 alpha in pancreatic beta-cells causes abnormal islet architecture with decreased expression of E-cadherin, reduced beta-cell proliferation, and diabetes. Diabetes 2002;51:114-23. https://doi.org/10.2337/diabetes.51.1.114
  56. Tanaka D, Nagashima K, Sasaki M, Funakoshi S, Kondo Y, Yasuda K, et al. Exome sequencing identifies a new candidate mutation for susceptibility to diabetes in a family with highly aggregated type 2 diabetes. Molecular Genetics and Metabolism 2013;109:112-7. https://doi.org/10.1016/j.ymgme.2013.02.010
  57. Johansson S, Irgens H, Chudasama KK, Molnes J, Aerts J, Roque FS, et al. Exome sequencing and genetic testing for MODY. PLoS One 2012;7:e38050. https://doi.org/10.1371/journal.pone.0038050