참고문헌
- Abdullah, S., Sehgal, S. K., Ali, S., Liatukas, Z., Ittu, M. and Kaur, N. 2017. Characterization of Pyrenophora tritici-repentis (tan spot of wheat) races in Baltic States and Romania. Plant Pathol. J. 33:133-139. https://doi.org/10.5423/PPJ.OA.10.2016.0214
- Adhikari, T. B., Bai, J., Meinhardt, S. W., Gurung, S., Myrfield, M., Patel, J., Ali, S., Gudmestad, N. C. and Rasmussen, J. B. 2009. Tsn1-mediated host responses to ToxA from Pyrenophora tritici-repentis. Mol. Plant-Microbe Interact. 22:1056-1068. https://doi.org/10.1094/mpmi-22-9-1056
- Ali, S. and Francl, L. J. 2001. Recovery of Pyrenophora triticirepentis from barley and reaction of 12 cultivars to five races and two host-specific toxins. Plant Dis. 85:580-584. https://doi.org/10.1094/PDIS.2001.85.6.580
- Ali, S. and Francl, L. J. 2003. Population race structure of Pyrenophora tritici-repentis prevalent on wheat and noncereal grasses in the great plains. Plant Dis. 87:418-422. https://doi.org/10.1094/PDIS.2003.87.4.418
- Ali, S., Gurung, S. and Adhikari, T. B. 2010. Identification and characterization of novel isolates of Pyrenophora triticirepentis from Arkansas. Plant Dis. 94:229-235. https://doi.org/10.1094/PDIS-94-2-0229
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Anders, S., Pyl, P. T. and Huber, W. 2015. HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166-169. https://doi.org/10.1093/bioinformatics/btu638
- Andersen, E. J., Ali, S. and Nepal, M. P. 2019a. Supplementary files for transcriptomic changes in wheat during tan spot (pyrenophora tritici-repentis) disease. Sequence Read Archive, SRP189899. URL https://identifiers.org/ncbi/insdc.sra:SRP189899 [28 January 2021].
- Andersen, E. J., Ali, S. and Nepal, M. P. 2019b. Transcriptomic changes in wheat during tan spot (Pyrenophora tritici-repentis) disease. BMC Res. Notes 12:471. https://doi.org/10.1186/s13104-019-4517-4
- Andrews, S. 2010. FastQC: a quality control tool for high throughput sequence data. URL http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ [28 January 2021].
- Bacete, L., Melida, H., Miedes, E. and Molina, A. 2018. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. Plant J. 93:614-636. https://doi.org/10.1111/tpj.13807
- Bak, S., Paquette, S. M., Morant, M., Morant, A.V., Saito, S., Bjarnholt, N., Zagrobelny, M., Jorgensen, K., Osmani, S., Simonsen, H. T., Perez, R. S., van Heeswijck, T. B., Jorgensen, B. and Moller, B. L. 2006. Cyanogenic glycosides: a case study for evolution and application of cytochromes P450. Phytochem. Rev. 5:309-329. https://doi.org/10.1007/s11101-006-9033-1
- Cheong, J., Wallwork, H. and Williams, K. 2004. Identification of a major QTL for yellow leaf spot resistance in the wheat varieties Brookton and Cranbrook. Aust. J. Agric. Res. 55:315-319. https://doi.org/10.1071/AR03140
- Ciuffetti, L. M., Francl, L. J., Ballance, G. M., Bockus, W. W., Lamari, L., Meinhardt, S. W. and Rasmussen, J. B. 1998. Standardization of toxin nomenclature in the Pyrenophora tritici-repentis/wheat interaction. Can. J. Plant Pathol. 20:421-424. https://doi.org/10.1080/07060669809500415
- Ciuffetti, L. M., Manning, V. A., Pandelova, I., Betts, M. F. and Martinez, J. P. 2010. Host-selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora triticirepentis-wheat interaction. New Phytol. 187:911-919. https://doi.org/10.1111/j.1469-8137.2010.03362.x
- Ciuffetti, L. M. and Tuori, R. P. 1999. Advances in the characterization of the Pyrenophora tritici-repentis-wheat interaction. Phytopathology 89:444-449. https://doi.org/10.1094/PHYTO.1999.89.6.444
- Dalton, H. L., Blomstedt, C. K., Neale, A. D., Gleadow, R., DeBoer, K. D. and Hamill, J. D. 2016. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L. J. Exp. Bot. 67:3367-3381. https://doi.org/10.1093/jxb/erw166
- Du Fall, L. A. and Solomon, P. S. 2013. The necrotrophic effector SnToxA induces the synthesis of a novel phytoalexin in wheat. New Phytol. 200:185-200. https://doi.org/10.1111/nph.12356
- Dushnicky, L. G., Ballance, G. M., Sumner, M. J. and Mac-Gregor, A. W. 1996. Penetration and infection of susceptible and resistant wheat cultivars by a necrosis toxin-producing isolate of Pyrenophora tritici-repentis. Can. J. Plant Pathol. 18:392-402. https://doi.org/10.1080/07060669609500594
- Effertz, R. J., Meinhardt, S. W., Anderson, J. A., Jordahl, J. G. and Francl, L. J. 2002. Identification of a chlorosis-inducing toxin from Pyrenophora tritici-repentis and the chromosomal location of an insensitivity locus in wheat. Phytopathology 92:527-533. https://doi.org/10.1094/PHYTO.2002.92.5.527
- Faris, J. D., Anderson, J. A., Francl, L. J. and Jordahl, J. G. 1996. Chromosomal location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture filtrate from Pyrenophora tritici-repentis. Phytopathology 86:459-463. https://doi.org/10.1094/Phyto-86-459
- Faris, J. D. and Friesen, T. L. 2005. Identification of quantitative trait loci for race-nonspecific resistance to tan spot in wheat. Theor. Appl. Genet. 111:386-392. https://doi.org/10.1007/s00122-005-2033-5
- Faris, J. D., Liu, Z. and Xu, S. S. 2013. Genetics of tan spot resistance in wheat. Theor. Appl. Genet. 126:2197-2217. https://doi.org/10.1007/s00122-013-2157-y
- Faris, J. D., Zhang, Z., Lu, H., Lu, S., Reddy, L., Cloutier, S., Fellers, J. P., Meinhardt, S. W., Rasmussen, J. B., Xu, S. S., Oliver, R. P., Simons, K. J. and Friesen, T. L. 2010. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc. Natl. Acad. Sci. U. S. A. 107:13544-13549. https://doi.org/10.1073/pnas.1004090107
- Figueroa, M., Manning, V. A., Pandelova, I. and Ciuffetti, L. M. 2015. Persistence of the host-selective toxin Ptr ToxB in the apoplast. Mol. Plant-Microbe Interact. 28:1082-1090. https://doi.org/10.1094/MPMI-05-15-0097-R
- Food and Agriculture Organization of the United Nations. 2013. FAOSTAT. URL http://www.fao.org/faostat/en/#data [28 January 2021].
- Frey, M., Schullehner, K., Dick, R., Fiesselmann, A. and Gierl, A. 2009. Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. Phytochemistry 70:1645-1651. https://doi.org/10.1016/j.phytochem.2009.05.012
- Friesen, T. L. and Faris, J. D. 2004. Molecular mapping of resistance to Pyrenophora tritici-repentis race 5 and sensitivity to Ptr ToxB in wheat. Theor. Appl. Genet. 109:464-471. https://doi.org/10.1007/s00122-004-1678-9
- Friesen, T. L., Stukenbrock, E. H., Liu, Z., Meinhardt, S., Ling, H., Faris, J. D., Rasmussen, J. B., Solomon, P. S., McDonald, B. A. and Oliver, R. P. 2006. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat. Genet. 38:953-956. https://doi.org/10.1038/ng1839
- Ge, S. X., Son, E. W. and Yao, R. 2018. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics 19:534. https://doi.org/10.1186/s12859-018-2486-6
- International Wheat Genome Sequencing Consortium. 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191. https://doi.org/10.1126/science.aar7191
- Jones, J. D. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329. https://doi.org/10.1038/nature05286
- Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew, M., Yong, S.-Y., Lopez, R. and Hunter, S. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236-1240. https://doi.org/10.1093/bioinformatics/btu031
- Jordahl, J. G. and Francl, L. J. 1992. Increase and storage of cultures of Pyrenophora tritici-repentis. In: Advances in Tan Spot Research: Proceedings of the Second International Tan Spot Workshop, eds. by L. J. Francl, J. M. Krupinsky and M. P. McMullen, pp. 109. North Dakota Agricultural Experiment Station, North Dakota State University, Fargo, ND, USA.
- Kariyawasam, G. K., Carter, A. H., Rasmussen, J. B., Faris, J., Xu, S. S., Mergoum, M. and Liu, Z. 2016. Genetic relationships between race-nonspecific and race-specific interactions in the wheat-Pyrenophora tritici-repentis pathosystem. Theor. Appl. Genet. 129:897-908. https://doi.org/10.1007/s00122-016-2670-x
- Kersey, P. J., Allen, J. E., Christensen, M., Davis, P., Falin, L. J., Grabmueller, C., Hughes, D. S., Humphrey, J., Kerhornou, A., Khobova, J., Langridge, N., McDowall, M. D., Maheswari, U., Maslen, G., Nuhn, M., Ong, C. K., Paulini, M., Pedro, H., Toneva, I., Tuli, M. A., Walts, B., Williams, G., Wilson, D., Youens-Clark, K., Monaco, M. K., Stein, J., Wei, X., Ware, D., Bolser, D. M., Howe, K. L., Kulesha, E., Lawson, D. and Staines, D. M. 2014. Ensembl genomes 2013: scaling up access to genome-wide data. Nucleic Acids Res. 42:D546-D552. https://doi.org/10.1093/nar/gkt979
- Kim, D., Langmead, B. and Salzberg, S. L. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12:357-360. https://doi.org/10.1038/nmeth.3317
- Kong, Y. 2011. Btrim: a fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics 98:152-153. https://doi.org/10.1016/j.ygeno.2011.05.009
- Lamari, L. and Bernier, C. C. 1989. Evaluation of wheat lines and cultivars to tan spot Pyrenophora tritici-repentis based on lesion type. Can. J. Plant Pathol. 11:49-56. https://doi.org/10.1080/07060668909501146
- Lamari, L., Gilbert, J. and Tekauz, A. 1998. Race differentiation in Pyrenophora tritici-repentis and survey of physiologic variation in western Canada. Can. J. Plant Pathol. 20:396-400. https://doi.org/10.1080/07060669809500410
- Larez, C. R., Hosford, R. M. Jr. and Freeman, T. P. 1986. Infection of wheat and oats by Pyrenophora tritici-repentis and initial characterization of resistance. Phytopathology 76:931-938. https://doi.org/10.1094/Phyto-76-931
- Liu, Y., Salsman, E., Wang, R., Galagedara, N., Zhang, Q., Fiedler, J. D., Liu, Z., Xu, S., Faris, J. D. and Li, X. 2020. Meta-QTL analysis of tan spot resistance in wheat. Theor. Appl. Genet. 133:2363-2375. https://doi.org/10.1007/s00122-020-03604-1
- Liu, Z., Zurn, J. D., Kariyawasam, G., Faris, J. D., Shi, G., Hansen, J., Rasmussen, J. B. and Acevedo, M. 2017. Inverse gene-for-gene interactions contribute additively to tan spot susceptibility in wheat. Theor. Appl. Genet. 130:1267-1276. https://doi.org/10.1007/s00122-017-2886-4
- Lorang, J. M., Sweat, T. A. and Wolpert, T. J. 2007. Plant disease susceptibility conferred by a "resistance" gene. Proc. Natl. Acad. Sci. U. S. A. 104:14861-14866. https://doi.org/10.1073/pnas.0702572104
- Love, M. I., Huber, W. and Anders, S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. https://doi.org/10.1186/s13059-014-0550-8
- Ma, Q.-H. and Liu, Y.-C. 2015. TaDIR13, a dirigent protein from wheat, promotes lignan biosynthesis and enhances pathogen resistance. Plant Mol. Biol. Rep. 33:143-152. https://doi.org/10.1007/s11105-014-0737-x
- Manning, V. A., Chu, A. L., Steeves, J. E., Wolpert, T. J. and Ciuffetti, L. M. 2009. A host-selective toxin of Pyrenophora tritici-repentis, Ptr ToxA, induces photosystem changes and reactive oxygen species accumulation in sensitive wheat. Mol. Plant-Microbe Interact. 22:665-676. https://doi.org/10.1094/MPMI-22-6-0665
- Manning, V. A., Hamilton, S. M., Karplus, P. A. and Ciuffetti, L. M. 2008. The Arg-Gly-Asp-containing, solvent-exposed loop of Ptr ToxA is required for internalization. Mol. Plant-Microbe Interact. 21:315-325. https://doi.org/10.1094/mpmi-21-3-0315
- Manning, V. A., Hardison, L. K. and Ciuffetti, L. M. 2007. Ptr ToxA interacts with a chloroplast-localized protein. Mol. Plant-Microbe Interact. 20:168-177. https://doi.org/10.1094/MPMI-20-2-0168
- Moolhuijzen, P., See, P. T. and Moffat, C. S. 2018. Exploration of wheat and pathogen transcriptomes during tan spot infection. BMC Res. Notes 11:907. https://doi.org/10.1186/s13104-018-3993-2
- Murray, T. D., Bockus, W. W., Bowden, R. L., Hunger, R. M. and Smiley, R. W. 2015. Diseases of wheat (Triticum spp. L.). URL https://www.apsnet.org/edcenter/resources/common-names/Pages/Wheat.aspx [28 January 2021].
- Ordonio, R., Ito, Y., Morinaka, Y., Sazuka, T. and Matsuoka, M. 2016. Molecular breeding of Sorghum bicolor, a novel energy crop. Int. Rev. Cell Mol. Biol. 321:221-257. https://doi.org/10.1016/bs.ircmb.2015.09.001
- Pandelova, I., Betts, M. F., Manning, V. A., Wilhelm, L. J., Mockler, T. C. and Ciuffetti, L. M. 2009. Analysis of transcriptome changes induced by Ptr ToxA in wheat provides insights into the mechanisms of plant susceptibility. Mol. Plant 2:1067-1083. https://doi.org/10.1093/mp/ssp045
- Petrov, V., Qureshi, M. K., Hille, J. and Gechev, T. 2018. Occurrence, biochemistry and biological effects of host-selective plant mycotoxins. Food Chem. Toxicol. 112:251-264. https://doi.org/10.1016/j.fct.2017.12.047
- Rees, R. G. and Platz, G. J. 1983. Effects of yellow spot on wheat: comparison of epidemics at different stages of crop development. Aust. J. Agric. Res. 34:39-46. https://doi.org/10.1071/AR9830039
- Shi, G., Zhang, Z., Friesen, T. L., Raats, D., Fahima, T., Brueggeman, R. S., Lu, S., Trick, H. N., Liu, Z., Chao, W., Frenkel, Z., Xu, S. S., Rasmussen, J. B. and Faris, J. D. 2016. The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease. Sci. Adv. 2:e1600822. https://doi.org/10.1126/sciadv.1600822
- Singh, R. P., Singh, P. K., Rutkoski, J., Hodson, D. P., He, X., Jorgensen, L. N., Hovmoller, M. S. and Huerta-Espino, J. 2016. Disease impact on wheat yield potential and prospects of genetic control. Annu. Rev. Phytopathol. 54:303-322. https://doi.org/10.1146/annurev-phyto-080615-095835
- Tai, Y.-S., Bragg, J., Lu, H., Edwards, M. C., Faris, J. D., Friesen, T. L. and Meinhardt, S. W. 2007. Functional characterization of Ptr ToxA and molecular identification of its intracellular targeting protein in wheat. In: Plant and Animal Genome XV Conference Abstracts, publication no. 201233. Scherago International, Livingston, NJ, USA.
- The R Foundation. 2013. The R project for statistical computing. URL https://www.r-project.org/ [28 January 2021].
- Wang, Q., Chen, D., Wu, M., Zhu, J., Jiang, C., Xu, J. R. and Liu, H. 2018. MFS transporters and GABA metabolism are involved in the self-defense against DON in Fusarium graminearum. Front. Plant Sci. 9:438. https://doi.org/10.3389/fpls.2018.00438
- Woldemariam, M. G., Ahern, K., Jander, G. and Tzin, V. 2018. A role for 9-lipoxygenases in maize defense against insect herbivory. Plant Signal. Behav. 13:e1422462. https://doi.org/10.1080/15592324.2017.1422462