Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.06.2020.0109

Necrotrophic Fungus Pyrenophora tritici-repentis Triggers Expression of Multiple Resistance Components in Resistant and Susceptible Wheat Cultivars  

Andersen, Ethan J. (Department of Biology, Francis Marion University)
Nepal, Madhav P. (Department of Biology and Microbiology, South Dakota State University)
Ali, Shaukat (Department of Agronomy, Horticulture and Plant Science, South Dakota State University)
Publication Information
The Plant Pathology Journal / v.37, no.2, 2021 , pp. 99-114 More about this Journal
Abstract
Tan spot of wheat, caused by Pyrenophora tritici-repentis (Ptr), results in a yield loss through chlorosis and necrosis of healthy leaf tissue. The major objective of this study was to compare gene expression in resistant and susceptible wheat cultivars after infection with Ptr ToxA-producing race 2 and direct infiltration with Ptr ToxA proteins. Greenhouse experiments included exposure of the wheat cultivars to pathogen inoculum or direct infiltration of leaf tissue with Ptr-ToxA protein isolate. Samples from the experiments were subjected to RNA sequencing. Results showed that ToxA RNA sequences were first detected in samples collected eight hours after treatments indicating that upon Ptr contact with wheat tissue, Ptr started expressing ToxA. The resistant wheat cultivar, in response to Ptr inoculum, expressed genes associated with plant resistance responses that were not expressed in the susceptible cultivar; genes of interest included five chitinases, eight transporters, five pathogen-detecting receptors, and multiple classes of signaling factors. Resistant and susceptible wheat cultivars therefore differed in their response in the expression of genes that encode chitinases, transporters, wall-associated kinases, permeases, and wound-induced proteins, among others. Plants exposed to Ptr inoculum expressed transcription factors, kinases, receptors, and peroxidases, which are not expressed as highly in the control samples or samples infiltrated with ToxA. Several of the differentially expressed genes between cultivars were found in the Ptr resistance QTLs on chromosomes 1A, 2D, 3B, and 5A. Future studies should elucidate the specific roles these genes play in the wheat response to Ptr.
Keywords
pathogen resistance; plant-pathogen interaction; Pyrenophora tritici-repentis; RNA-seq; tan spot; wheat;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abdullah, S., Sehgal, S. K., Ali, S., Liatukas, Z., Ittu, M. and Kaur, N. 2017. Characterization of Pyrenophora tritici-repentis (tan spot of wheat) races in Baltic States and Romania. Plant Pathol. J. 33:133-139.   DOI
2 Adhikari, T. B., Bai, J., Meinhardt, S. W., Gurung, S., Myrfield, M., Patel, J., Ali, S., Gudmestad, N. C. and Rasmussen, J. B. 2009. Tsn1-mediated host responses to ToxA from Pyrenophora tritici-repentis. Mol. Plant-Microbe Interact. 22:1056-1068.   DOI
3 Ali, S. and Francl, L. J. 2001. Recovery of Pyrenophora triticirepentis from barley and reaction of 12 cultivars to five races and two host-specific toxins. Plant Dis. 85:580-584.   DOI
4 Larez, C. R., Hosford, R. M. Jr. and Freeman, T. P. 1986. Infection of wheat and oats by Pyrenophora tritici-repentis and initial characterization of resistance. Phytopathology 76:931-938.   DOI
5 Liu, Y., Salsman, E., Wang, R., Galagedara, N., Zhang, Q., Fiedler, J. D., Liu, Z., Xu, S., Faris, J. D. and Li, X. 2020. Meta-QTL analysis of tan spot resistance in wheat. Theor. Appl. Genet. 133:2363-2375.   DOI
6 Liu, Z., Zurn, J. D., Kariyawasam, G., Faris, J. D., Shi, G., Hansen, J., Rasmussen, J. B. and Acevedo, M. 2017. Inverse gene-for-gene interactions contribute additively to tan spot susceptibility in wheat. Theor. Appl. Genet. 130:1267-1276.   DOI
7 Lorang, J. M., Sweat, T. A. and Wolpert, T. J. 2007. Plant disease susceptibility conferred by a "resistance" gene. Proc. Natl. Acad. Sci. U. S. A. 104:14861-14866.   DOI
8 Love, M. I., Huber, W. and Anders, S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550.   DOI
9 Ma, Q.-H. and Liu, Y.-C. 2015. TaDIR13, a dirigent protein from wheat, promotes lignan biosynthesis and enhances pathogen resistance. Plant Mol. Biol. Rep. 33:143-152.   DOI
10 Manning, V. A., Chu, A. L., Steeves, J. E., Wolpert, T. J. and Ciuffetti, L. M. 2009. A host-selective toxin of Pyrenophora tritici-repentis, Ptr ToxA, induces photosystem changes and reactive oxygen species accumulation in sensitive wheat. Mol. Plant-Microbe Interact. 22:665-676.   DOI
11 Manning, V. A., Hamilton, S. M., Karplus, P. A. and Ciuffetti, L. M. 2008. The Arg-Gly-Asp-containing, solvent-exposed loop of Ptr ToxA is required for internalization. Mol. Plant-Microbe Interact. 21:315-325.   DOI
12 Anders, S., Pyl, P. T. and Huber, W. 2015. HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166-169.   DOI
13 Ali, S. and Francl, L. J. 2003. Population race structure of Pyrenophora tritici-repentis prevalent on wheat and noncereal grasses in the great plains. Plant Dis. 87:418-422.   DOI
14 Ali, S., Gurung, S. and Adhikari, T. B. 2010. Identification and characterization of novel isolates of Pyrenophora triticirepentis from Arkansas. Plant Dis. 94:229-235.   DOI
15 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410.   DOI
16 Bacete, L., Melida, H., Miedes, E. and Molina, A. 2018. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. Plant J. 93:614-636.   DOI
17 Andersen, E. J., Ali, S. and Nepal, M. P. 2019a. Supplementary files for transcriptomic changes in wheat during tan spot (pyrenophora tritici-repentis) disease. Sequence Read Archive, SRP189899. URL https://identifiers.org/ncbi/insdc.sra:SRP189899 [28 January 2021].
18 Andersen, E. J., Ali, S. and Nepal, M. P. 2019b. Transcriptomic changes in wheat during tan spot (Pyrenophora tritici-repentis) disease. BMC Res. Notes 12:471.   DOI
19 Andrews, S. 2010. FastQC: a quality control tool for high throughput sequence data. URL http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ [28 January 2021].
20 Moolhuijzen, P., See, P. T. and Moffat, C. S. 2018. Exploration of wheat and pathogen transcriptomes during tan spot infection. BMC Res. Notes 11:907.   DOI
21 Murray, T. D., Bockus, W. W., Bowden, R. L., Hunger, R. M. and Smiley, R. W. 2015. Diseases of wheat (Triticum spp. L.). URL https://www.apsnet.org/edcenter/resources/common-names/Pages/Wheat.aspx [28 January 2021].
22 Ordonio, R., Ito, Y., Morinaka, Y., Sazuka, T. and Matsuoka, M. 2016. Molecular breeding of Sorghum bicolor, a novel energy crop. Int. Rev. Cell Mol. Biol. 321:221-257.   DOI
23 Pandelova, I., Betts, M. F., Manning, V. A., Wilhelm, L. J., Mockler, T. C. and Ciuffetti, L. M. 2009. Analysis of transcriptome changes induced by Ptr ToxA in wheat provides insights into the mechanisms of plant susceptibility. Mol. Plant 2:1067-1083.   DOI
24 Petrov, V., Qureshi, M. K., Hille, J. and Gechev, T. 2018. Occurrence, biochemistry and biological effects of host-selective plant mycotoxins. Food Chem. Toxicol. 112:251-264.   DOI
25 Rees, R. G. and Platz, G. J. 1983. Effects of yellow spot on wheat: comparison of epidemics at different stages of crop development. Aust. J. Agric. Res. 34:39-46.   DOI
26 Shi, G., Zhang, Z., Friesen, T. L., Raats, D., Fahima, T., Brueggeman, R. S., Lu, S., Trick, H. N., Liu, Z., Chao, W., Frenkel, Z., Xu, S. S., Rasmussen, J. B. and Faris, J. D. 2016. The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease. Sci. Adv. 2:e1600822.   DOI
27 Ciuffetti, L. M., Manning, V. A., Pandelova, I., Betts, M. F. and Martinez, J. P. 2010. Host-selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora triticirepentis-wheat interaction. New Phytol. 187:911-919.   DOI
28 Bak, S., Paquette, S. M., Morant, M., Morant, A.V., Saito, S., Bjarnholt, N., Zagrobelny, M., Jorgensen, K., Osmani, S., Simonsen, H. T., Perez, R. S., van Heeswijck, T. B., Jorgensen, B. and Moller, B. L. 2006. Cyanogenic glycosides: a case study for evolution and application of cytochromes P450. Phytochem. Rev. 5:309-329.   DOI
29 Cheong, J., Wallwork, H. and Williams, K. 2004. Identification of a major QTL for yellow leaf spot resistance in the wheat varieties Brookton and Cranbrook. Aust. J. Agric. Res. 55:315-319.   DOI
30 Ciuffetti, L. M., Francl, L. J., Ballance, G. M., Bockus, W. W., Lamari, L., Meinhardt, S. W. and Rasmussen, J. B. 1998. Standardization of toxin nomenclature in the Pyrenophora tritici-repentis/wheat interaction. Can. J. Plant Pathol. 20:421-424.   DOI
31 Wang, Q., Chen, D., Wu, M., Zhu, J., Jiang, C., Xu, J. R. and Liu, H. 2018. MFS transporters and GABA metabolism are involved in the self-defense against DON in Fusarium graminearum. Front. Plant Sci. 9:438.   DOI
32 Singh, R. P., Singh, P. K., Rutkoski, J., Hodson, D. P., He, X., Jorgensen, L. N., Hovmoller, M. S. and Huerta-Espino, J. 2016. Disease impact on wheat yield potential and prospects of genetic control. Annu. Rev. Phytopathol. 54:303-322.   DOI
33 Manning, V. A., Hardison, L. K. and Ciuffetti, L. M. 2007. Ptr ToxA interacts with a chloroplast-localized protein. Mol. Plant-Microbe Interact. 20:168-177.   DOI
34 Ciuffetti, L. M. and Tuori, R. P. 1999. Advances in the characterization of the Pyrenophora tritici-repentis-wheat interaction. Phytopathology 89:444-449.   DOI
35 Dalton, H. L., Blomstedt, C. K., Neale, A. D., Gleadow, R., DeBoer, K. D. and Hamill, J. D. 2016. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L. J. Exp. Bot. 67:3367-3381.   DOI
36 Du Fall, L. A. and Solomon, P. S. 2013. The necrotrophic effector SnToxA induces the synthesis of a novel phytoalexin in wheat. New Phytol. 200:185-200.   DOI
37 Tai, Y.-S., Bragg, J., Lu, H., Edwards, M. C., Faris, J. D., Friesen, T. L. and Meinhardt, S. W. 2007. Functional characterization of Ptr ToxA and molecular identification of its intracellular targeting protein in wheat. In: Plant and Animal Genome XV Conference Abstracts, publication no. 201233. Scherago International, Livingston, NJ, USA.
38 The R Foundation. 2013. The R project for statistical computing. URL https://www.r-project.org/ [28 January 2021].
39 Woldemariam, M. G., Ahern, K., Jander, G. and Tzin, V. 2018. A role for 9-lipoxygenases in maize defense against insect herbivory. Plant Signal. Behav. 13:e1422462.   DOI
40 Dushnicky, L. G., Ballance, G. M., Sumner, M. J. and Mac-Gregor, A. W. 1996. Penetration and infection of susceptible and resistant wheat cultivars by a necrosis toxin-producing isolate of Pyrenophora tritici-repentis. Can. J. Plant Pathol. 18:392-402.   DOI
41 Effertz, R. J., Meinhardt, S. W., Anderson, J. A., Jordahl, J. G. and Francl, L. J. 2002. Identification of a chlorosis-inducing toxin from Pyrenophora tritici-repentis and the chromosomal location of an insensitivity locus in wheat. Phytopathology 92:527-533.   DOI
42 Faris, J. D., Anderson, J. A., Francl, L. J. and Jordahl, J. G. 1996. Chromosomal location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture filtrate from Pyrenophora tritici-repentis. Phytopathology 86:459-463.   DOI
43 Faris, J. D. and Friesen, T. L. 2005. Identification of quantitative trait loci for race-nonspecific resistance to tan spot in wheat. Theor. Appl. Genet. 111:386-392.   DOI
44 Faris, J. D., Liu, Z. and Xu, S. S. 2013. Genetics of tan spot resistance in wheat. Theor. Appl. Genet. 126:2197-2217.   DOI
45 Friesen, T. L., Stukenbrock, E. H., Liu, Z., Meinhardt, S., Ling, H., Faris, J. D., Rasmussen, J. B., Solomon, P. S., McDonald, B. A. and Oliver, R. P. 2006. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat. Genet. 38:953-956.   DOI
46 Faris, J. D., Zhang, Z., Lu, H., Lu, S., Reddy, L., Cloutier, S., Fellers, J. P., Meinhardt, S. W., Rasmussen, J. B., Xu, S. S., Oliver, R. P., Simons, K. J. and Friesen, T. L. 2010. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc. Natl. Acad. Sci. U. S. A. 107:13544-13549.   DOI
47 Figueroa, M., Manning, V. A., Pandelova, I. and Ciuffetti, L. M. 2015. Persistence of the host-selective toxin Ptr ToxB in the apoplast. Mol. Plant-Microbe Interact. 28:1082-1090.   DOI
48 Food and Agriculture Organization of the United Nations. 2013. FAOSTAT. URL http://www.fao.org/faostat/en/#data [28 January 2021].
49 Frey, M., Schullehner, K., Dick, R., Fiesselmann, A. and Gierl, A. 2009. Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. Phytochemistry 70:1645-1651.   DOI
50 Friesen, T. L. and Faris, J. D. 2004. Molecular mapping of resistance to Pyrenophora tritici-repentis race 5 and sensitivity to Ptr ToxB in wheat. Theor. Appl. Genet. 109:464-471.   DOI
51 Ge, S. X., Son, E. W. and Yao, R. 2018. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics 19:534.   DOI
52 International Wheat Genome Sequencing Consortium. 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191.   DOI
53 Jones, J. D. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329.   DOI
54 Kong, Y. 2011. Btrim: a fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics 98:152-153.   DOI
55 Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew, M., Yong, S.-Y., Lopez, R. and Hunter, S. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236-1240.   DOI
56 Jordahl, J. G. and Francl, L. J. 1992. Increase and storage of cultures of Pyrenophora tritici-repentis. In: Advances in Tan Spot Research: Proceedings of the Second International Tan Spot Workshop, eds. by L. J. Francl, J. M. Krupinsky and M. P. McMullen, pp. 109. North Dakota Agricultural Experiment Station, North Dakota State University, Fargo, ND, USA.
57 Kariyawasam, G. K., Carter, A. H., Rasmussen, J. B., Faris, J., Xu, S. S., Mergoum, M. and Liu, Z. 2016. Genetic relationships between race-nonspecific and race-specific interactions in the wheat-Pyrenophora tritici-repentis pathosystem. Theor. Appl. Genet. 129:897-908.   DOI
58 Kersey, P. J., Allen, J. E., Christensen, M., Davis, P., Falin, L. J., Grabmueller, C., Hughes, D. S., Humphrey, J., Kerhornou, A., Khobova, J., Langridge, N., McDowall, M. D., Maheswari, U., Maslen, G., Nuhn, M., Ong, C. K., Paulini, M., Pedro, H., Toneva, I., Tuli, M. A., Walts, B., Williams, G., Wilson, D., Youens-Clark, K., Monaco, M. K., Stein, J., Wei, X., Ware, D., Bolser, D. M., Howe, K. L., Kulesha, E., Lawson, D. and Staines, D. M. 2014. Ensembl genomes 2013: scaling up access to genome-wide data. Nucleic Acids Res. 42:D546-D552.   DOI
59 Kim, D., Langmead, B. and Salzberg, S. L. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12:357-360.   DOI
60 Lamari, L. and Bernier, C. C. 1989. Evaluation of wheat lines and cultivars to tan spot Pyrenophora tritici-repentis based on lesion type. Can. J. Plant Pathol. 11:49-56.   DOI
61 Lamari, L., Gilbert, J. and Tekauz, A. 1998. Race differentiation in Pyrenophora tritici-repentis and survey of physiologic variation in western Canada. Can. J. Plant Pathol. 20:396-400.   DOI