• Title/Summary/Keyword: pathogen resistance

Search Result 560, Processing Time 0.025 seconds

The Hypersensitive Response. A Cell Death during Disease Resistance

  • Park, Jeong-Mee
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.99-101
    • /
    • 2005
  • Host cell death occurs during many, but not all, interactions between plants and the pathogens that infect them. This cell death can be associated with disease resistance or susceptibility, depending on the nature of the pathogen. The most well-known cell death response in plants is the hypersensitive response (HR) associated with a resistance response. HR is commonly regulated by direct or indirect interactions between avirulence proteins from pathogen and resistance proteins from plant and it can be the result of multiple signaling pathways. Ion fluxes and the generation of reactive oxygen species commonly precede cell death, but a direct involvement of the latter seems to vary with the plant-pathogen combination. Exciting advances have been made in the identification of cellular protective components and cell death suppressors that might operate in HR. In this review, recent progress in the mechanisms by which plant programmed cell death (PCD) occurs during disease resistance will be discussed.

Platform of Hot Pepper Defense Genomics: Isolation of Pathogen Responsive Genes in Hot Pepper (Capsicum annuum L.) Non-Host Resistance Against Soybean Pustule Pathogen (Xanthomonas axonopodis pv. glycines)

  • Lee, Sang-Hyeob;Park, Do-Il
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • Host resistance is usually parasite-specific and is restricted to a particular pathogen races, and commonly is expressed against specific pathogen genotypes. In contrast, resistance shown by an entire plant species to a species of pathogen is known as non-host resistance. Therefore, non-host resistance is the more common and broad form of disease resistance exhibited by plants. As a first step to understand the mechanism of non-host plant defense, expressed sequence tags (EST) were generated from a hot pepper leaf cDNA library constructed from combined leaves collected at different time points after inoculation with non-host soybean pustule pathogen (Xanthomonas axonopodis pv. Glycines; Xag). To increase gene diversity, ESTs were also generated from cDNA libraries constructed from anthers and flower buds. Among a total of 10,061 ESTs, 8,525 were of sufficient quality to analyze further. Clustering analysis revealed that 55 % of all ESTs (4685) occurred only once. BLASTX analysis revealed that 74% of the ESTs had significant sequence similarity to known proteins present in the NCBI nr database. In addition, 1,265 ESTs were tentatively identified as being full-length cDNAs. Functional classification of the ESTs derived from pathogen-infected pepper leaves revealed that about 25% were disease- or defense-related genes. Furthermore, 323 (7%) ESTs were tentatively identified as being unique to hot pepper. This study represents the first analysis of sequence data from the hot pepper plant species. Although we focused on genes related to the plant defense response, our data will be useful for future comparative studies.

Epidemiological Concepts and Strategies in Breeding Soybeans for Disease Resistance

  • Seung Man, Lim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.1
    • /
    • pp.97-107
    • /
    • 1990
  • The epidemiology of plant disease deals with the dynamic processes of host-pathogen interactions, which determine the prevalence and severity of the disease. Epidemic processes for most foliar diseases of plants follow a series of steps: arrival of pathogens on plant surfaces, initial infection, incubation period, latent period, sporulation, dissemination of secondary inoculum, and infectious period. These complex biological processes are influenced by the environment-Man also often interfers with these processes by altering the host and pathogen populations and the environment. Slowing or halting any of the epidemic processes can delay the development of the epidemic, so that serious losses in yield due to disease do not occur. It is generally recognized that the most effective and efficient method of minimizing disease damage is through the use of resistant cultivars, particularly when other methods such as fungicide applications are not economically feasible-Populations of plant pathogens are not genetically uniform nor are they necessarily stable. Cultivars bred for resistance to current populations of a pathogen may not be resistant in the future due to selection pressures placed on the pathogen populations. Understanding population development and genetic variability in the pathogen, and knowledge of the genetics of resistance in the plant should help in developing breeding strategies that wi1l provide effective and stable disease control through genetic resistance. In the United States, soybeans have ranked first in value of crops sold off the farm in recent years. Soybeans have been the leading U. S.

  • PDF

Microbiological Evaluation of Antibiotic Resistance and Pathgoenicity in Autothermal Thermophilic Aerobic Digestion Treated Swine Manure

  • Han Il;Congeevaram Shankar;Gi Dong-Won;Park Jun-Hong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.119-122
    • /
    • 2006
  • In both untreated and conventionally stabilized swine manures antibiotic resistant (AR) microorganisms, Staphylococcus-like and Salmonella-like microorganisms were detected. Also pathogens with MAR phynotype were detected. Presence of such microorganisms suggest high level of pathogen-related health risk to farmers who may be in direct contact with the manure and its conventionally stabilized product In contrast the autothermal thermophilic aerobic digestion (ATAD) treatment have efficiently reduced AR and pathogenicity from the swine manure. When soil was fertilized using swine manure and its stabilized products, despite no detection of MAR-exhibiting pathogen-like microorganisms in fertilized soil, potential pathogen-related health risk could not be ruled out from the fertilized soil since the organic fertilization led to increase in AR and pathogenicity in the soil microbial communities. As conclusion, this microbiological study demonstrated that an ATAD process is applicable in control of pathogen-related health risk in livestock manure.

  • PDF

Genetic and Environmental Deterrents to Breeding for Disease Resistance in Dairy Cattle

  • Lin, C.Y.;Aggrey, S.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.9
    • /
    • pp.1247-1253
    • /
    • 2003
  • Selection for increased milk production in dairy cows has often resulted in a higher incidence of disease and thus incurred a greater health costs. Considerable interests have been shown in breeding dairy cattle for disease resistance in recent years. This paper discusses the limitations of breeding dairy cattle for genetic resistance in six parts: 1) complexity of disease resistance, 2) difficulty in estimating genetic parameters for planning breeding programs against disease, 3) undesirable relationship between production traits and disease, 4) disease as affected by recessive genes, 5) new mutation of the pathogens, and 6) variable environmental factors. The hidden problems of estimating genetic and phenotypic parameters involving disease incidence were examined in terms of categorical nature, non-independence, heterogeneity of error variance, non-randomness, and automatic relationship between disease and production traits. In light of these limitations, the prospect for increasing genetic resistance by conventional breeding methods would not be so bright as we like. Since the phenomenon of disease is the result of a joint interaction among host genotype, pathogen genotype and environment, it becomes essential to adopt an integrated approach of increasing genetic resistance of the host animals, manipulating the pathogen genotypes, developing effective vaccines and drugs, and improving the environmental conditions. The advances in DNA-based technology show considerable promise in directly manipulating host and pathogen genomes for genetic resistance and producing vaccines and drugs for prevention and medication to promote the wellbeing of the animals.

Toward Functional Genomics of Plant-Pathogen Interactions: Isolation and Analysis of Defense-related Genes of Rot Pepper Expressed During Resistance Against Pathogen

  • Park, Do-Il;Lee, Sang-Hyeob
    • The Plant Pathology Journal
    • /
    • v.18 no.2
    • /
    • pp.63-67
    • /
    • 2002
  • To understand plant-pathogen interactions, a complete set of hot pepper genes differentially expressed against pathogen attack was isolated. As an initial step, hundreds of differentially expressed cDNAS were isolated from hot pepper leaves showing non-host resistance against bacterial plant pathogens (Xanthomonas campestris pv. glycines and Pseudomonas syringae pv. syringae) using differential display reverse transcription polymerase chain reaction (DDDRT-PCR) technique. Reverse Northern and Northern blot analyses revealed that 50% of those genes were differentially expressed in pepper loaves during non-host resistance response. Among them, independent genes without redundancy were micro-arrayed for further analysis. Random EST sequence database were also generated from various CDNA libraries including pepper tissue specific libraries and leaves showing non-host hypersensitive response against X. campestris pv. glycines. As a primary stage, thousands of cDNA clones were sequenced and EST data were analyzed. These clones are being spotted on glass slide to study the expression profiling. Results of this study may further broaden knowledge on plant-pathogen interactions.

Molecular Mechanisms of Generation for Nitric Oxide and Reactive Oxygen Species, and Role of the Radical Burst in Plant Immunity

  • Yoshioka, Hirofumi;Asai, Shuta;Yoshioka, Miki;Kobayashi, Michie
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.321-329
    • /
    • 2009
  • Rapid production of nitric oxide (NO) and reactive oxygen species (ROS) has been implicated in the regulation of innate immunity in plants. A potato calcium-dependent protein kinase (StCDPK5) activates an NADPH oxidase StRBOHA to D by direct phosphorylation of N-terminal regions, and heterologous expression of StCDPK5 and StRBOHs in Nicotiana benthamiana results in oxidative burst. The transgenic potato plants that carry a constitutively active StCDPK5 driven by a pathogen-inducible promoter of the potato showed high resistance to late blight pathogen Phytophthora infestans accompanied by HR-like cell death and $H_2O_2$ accumulation in the attacked cells. In contrast, these plants showed high susceptibility to early blight necrotrophic pathogen Alternaria solani, suggesting that oxidative burst confers high resistance to biotrophic pathogen, but high susceptibility to necrotrophic pathogen. NO and ROS synergistically function in defense responses. Two MAPK cascades, MEK2-SIPK and cytokinesis-related MEK1-NTF6, are involved in the induction of NbRBOHB gene in N. benthamiana. On the other hand, NO burst is regulated by the MEK2-SIPK cascade. Conditional activation of SIPK in potato plants induces oxidative and NO bursts, and confers resistance to both biotrophic and necrotrophic pathogens, indicating the plants may have obtained during evolution the signaling pathway which regulates both NO and ROS production to adapt to wide-spectrum pathogens.

Review of fungicide resistance problems in Korea (국내 살균제 저항성 문제의 현황과 전망)

  • Kim, Choong-Hoe
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.2
    • /
    • pp.1-10
    • /
    • 2000
  • Fungicide resistance study in Korea is still in its infancy, and most of those resistance studies are largely limited to newness of the detected resistant strains. In future, detection of fungicide-resistant strains has to be based on sensitivity distribution of pathogen populations to certain fungicides, and standard levels of certain fungicides for resistance should be determined under the basis of this data. Most of the early research on fungicide resistance in Korea has overlooked this point, and resulted in inconsistency and confusion for monitoring sensitivity shift of pathogen population among individual researchers. Fungicide resistance detected in vitro tests has to be documented in field trials by examining control efficacy against resistant and wild-type pathogen populations. Resistance detection in wife has to be correlated with lower activity in practice. Using this process, fungicide resistance will have a practical meaning. Fitness evaluation of resistant strains for survival is, in particular, of importance to determine the future stability of the resistance in the pathogen population. In fields, sensitivity change of pathogen populations should be carefully monitored with and without fungicide selection pressures to establish long-term management strategies against fungicide resistance. It is becoming an urgent task to provide information through research for designing and implementing successful counter-measures against fungicide resistance problems in Korea.

  • PDF

INDUCTION OF SYSTEMIC RESISTANCE IN CUCUMBER AGAINST ANTHRACNOSE BY PLANT GROWTH PROMOTING FUNGI

  • Hyakumachi, Mitsuro
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1997.06a
    • /
    • pp.47-55
    • /
    • 1997
  • Plant growth promoting fungi(PGPF) obtained from zoysiagrass rhizosphere offer dual advantages - induse systemic disease resistance response in cucumber to C. orbiculare infection and cause enhancement of plant growth and increase yield. PGPF protected plants either by colonizing roots or by their metabolites. PGPF offer an advantage by protecting plants for more than 9 weeks and 6 week in the greenhouse and field. PGPF-induced plants limited pathogen spore germination and decreased the number of infection hyphae on the leaf, and increased lignification at places of attempted pathogen infection, thus reducing the pathogen spread. PGPF elicited increased activities of chitinascs, glucanases, peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase to C. orbiculare infection in cucumber plants. The role of PGPF in elevating cucumber defense response to pathogen infection suggests potential application of PGPF as biological control agents.

  • PDF

Evaluation of Sequential Planting Method for Screening of Durable Resistance against Rice Blast in Rice Breeding Program

  • Goh, Jaeduk;Kim, Byoung-Ryun;Shin, Dong Bum;Kang, In Jeong;Lee, Bong Choon;Kang, Hang-Won;Han, Seong-Sook
    • Research in Plant Disease
    • /
    • v.21 no.1
    • /
    • pp.20-23
    • /
    • 2015
  • A sequential planting method was developed to screen rice plants with durable resistance against rice blast in a short time, and applied for several years in Korean rice breeding program. In this study, we showed the advantages of a sequential planting method compared to other pathogenicity tests. The correlation analysis among three pathogenicity tests and other factors demonstrated that durable resistance depended on the average of diseased leaf area and the number of compatible pathogens. Significant correlations were found in the nursery test but not in the field test result. In addition, we traced changes in the pathogen population during sequential planting stages through re-isolation of the pathogen. The portion of compatible pathogens was increased during sequential planting. Through this study, we provide an effective sequential planting method and direction of durable resistance in a breeding program.