DOI QR코드

DOI QR Code

Mn-doping Effect on the Blackness and NIR Reflectance of Fe2O3 Cool Pigments

Mn 도핑이 Fe2O3 쿨 안료의 흑색도 및 NIR 반사율에 미치는 영향

  • Hwang, Jin Soo (Department of Chemical Engineering, Kongju National University) ;
  • Jung, Kyeong Youl (Department of Chemical Engineering, Kongju National University)
  • 황진수 (공주대학교 화학공학부) ;
  • 정경열 (공주대학교 화학공학부)
  • Received : 2021.02.11
  • Accepted : 2021.02.24
  • Published : 2021.02.28

Abstract

A high NIR-reflective black pigment is developed by Mn doping of Fe2O3. The pigment powders are prepared by spray pyrolysis, and the effect of the Mn concentration on the blackness and optical properties is investigated. Mn doping into the crystal lattice of α-Fe2O3 is found to effectively change the powder color from red to black, lowering the NIR reflectance compared to that of pure Fe2O3. The pigment doped with 10% Mn, i.e., Fe1.8Mn0.2O3, exhibits a black color with an optical bandgap of 1.3 eV and a Chroma value of 1.14. The NIR reflectance of the prepared Fe1.8Mn0.2O3 black pigment is 2.2 times higher than that of commercially available carbon black, and this material is proven to effectively work as a cool pigment in a temperature rise experiment under near-infrared illumination.

Keywords

References

  1. X. Li, Y. Zhou, S. Yu, G. Jia, H. Li and W. Li: Energy, 174 (2019) 407. https://doi.org/10.1016/j.energy.2019.02.183
  2. C. Ding, A. Han, M. Ye, Y. Zhang, L. Yao and J. Yang: RSC Adv., 8 (2018) 19690. https://doi.org/10.1039/C8RA02406E
  3. N. Xie, H. Li, A. Abdelhady and J. Harvey: Build Environ., 147 (2019) 231. https://doi.org/10.1016/j.buildenv.2018.10.017
  4. M. Santamouris and G. Y. Yun: Renew. Energy, 161 (2020) 792. https://doi.org/10.1016/j.renene.2020.07.109
  5. J. Yang, D. M. Kumar, A. Pyrgou, A. Chong, M. Santamouris, D. Kolokotsa and S. E. Lee: Sol. Energy, 173 (2018) 597. https://doi.org/10.1016/j.solener.2018.08.006
  6. J. M. Park, H. J. Kim and J. W. Yoo: Appl. Chem. Eng., 27 (2016) 35. https://doi.org/10.14478/ace.2015.1104
  7. S. Chen, M. Cheng, Y. Lang, C. Tian, H. Wei and C.-A. Wang: J. Adv. Ceram., 8 (2019) 39. https://doi.org/10.1007/s40145-018-0289-x
  8. S. Sadeghi-Niaraki, B. Ghasemi, A. Habibolahzadeh and E. Ghasemi: Mater. Sci. Eng. B, 262 (2020) 114752. https://doi.org/10.1016/j.mseb.2020.114752
  9. H. J. Lee, D. S. Kim, S.-H. Lee, H. M. Lim, B.-K. Choi, K.-J. Kang, J. I. Jeong and K.-S. Cho: Korean J. Mater. Res., 25 (2015) 61. https://doi.org/10.3740/MRSK.2015.25.2.61
  10. E. Ozel and S. Turan: J. Eur. Ceram. Soc., 23 (2003) 2097. https://doi.org/10.1016/S0955-2219(03)00036-0
  11. S. Mestre, M. D. Palacios and P. Agut: J. Eur. Ceram. Soc., 32 (2012) 1995. https://doi.org/10.1016/j.jeurceramsoc.2011.11.044
  12. S. Chen, J. Zhu, X. Wu, Q. Han and X. Wang: ACS Nano, 4 (2010) 2822. https://doi.org/10.1021/nn901311t
  13. N. Zhang, L. Li, Y. Guo, J. He, R. Wu, L. Song, G. Zhang, J. Zhao, D. Wang and H. He: Appl. Catal. B, 270 (2020) 118860. https://doi.org/10.1016/j.apcatb.2020.118860
  14. S. R. Ardekani, A. S. R. Aghdam, M. Nazari, A. Bayat, E. Yazdani and E. Saievar-Iranizard: J. Anal. Appl. Pyrolysis, 141 (2019) 104631. https://doi.org/10.1016/j.jaap.2019.104631
  15. J. H. Kim, G. D. Park and Y. C. Kang: Chem. Eng. J., 410 (2021) 128401. https://doi.org/10.1016/j.cej.2020.128401
  16. S. Yang, G. D. Park and Y. C. Kang: Appl. Surf. Sci., 529 (2020) 147140. https://doi.org/10.1016/j.apsusc.2020.147140
  17. K. Y. Jung: RSC Adv., 10 (2020) 16323. https://doi.org/10.1039/d0ra01549k
  18. J.-C. Seo, H. Kim, Y.-L. Lee, S. Nam, H.-S. Roh, K. Lee and S. B. Park: ACS Sustainable Chem. Eng., 9 (2021) 894. https://doi.org/10.1021/acssuschemeng.0c07927