Browse > Article
http://dx.doi.org/10.4150/KPMI.2021.28.1.38

Mn-doping Effect on the Blackness and NIR Reflectance of Fe2O3 Cool Pigments  

Hwang, Jin Soo (Department of Chemical Engineering, Kongju National University)
Jung, Kyeong Youl (Department of Chemical Engineering, Kongju National University)
Publication Information
Journal of Powder Materials / v.28, no.1, 2021 , pp. 38-43 More about this Journal
Abstract
A high NIR-reflective black pigment is developed by Mn doping of Fe2O3. The pigment powders are prepared by spray pyrolysis, and the effect of the Mn concentration on the blackness and optical properties is investigated. Mn doping into the crystal lattice of α-Fe2O3 is found to effectively change the powder color from red to black, lowering the NIR reflectance compared to that of pure Fe2O3. The pigment doped with 10% Mn, i.e., Fe1.8Mn0.2O3, exhibits a black color with an optical bandgap of 1.3 eV and a Chroma value of 1.14. The NIR reflectance of the prepared Fe1.8Mn0.2O3 black pigment is 2.2 times higher than that of commercially available carbon black, and this material is proven to effectively work as a cool pigment in a temperature rise experiment under near-infrared illumination.
Keywords
Cool pigment; NIR reflectance; Blackness; $Fe_2O_3$; Spray pyrolysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. R. Ardekani, A. S. R. Aghdam, M. Nazari, A. Bayat, E. Yazdani and E. Saievar-Iranizard: J. Anal. Appl. Pyrolysis, 141 (2019) 104631.   DOI
2 J. H. Kim, G. D. Park and Y. C. Kang: Chem. Eng. J., 410 (2021) 128401.   DOI
3 S. Yang, G. D. Park and Y. C. Kang: Appl. Surf. Sci., 529 (2020) 147140.   DOI
4 K. Y. Jung: RSC Adv., 10 (2020) 16323.   DOI
5 J.-C. Seo, H. Kim, Y.-L. Lee, S. Nam, H.-S. Roh, K. Lee and S. B. Park: ACS Sustainable Chem. Eng., 9 (2021) 894.   DOI
6 X. Li, Y. Zhou, S. Yu, G. Jia, H. Li and W. Li: Energy, 174 (2019) 407.   DOI
7 C. Ding, A. Han, M. Ye, Y. Zhang, L. Yao and J. Yang: RSC Adv., 8 (2018) 19690.   DOI
8 N. Xie, H. Li, A. Abdelhady and J. Harvey: Build Environ., 147 (2019) 231.   DOI
9 M. Santamouris and G. Y. Yun: Renew. Energy, 161 (2020) 792.   DOI
10 J. Yang, D. M. Kumar, A. Pyrgou, A. Chong, M. Santamouris, D. Kolokotsa and S. E. Lee: Sol. Energy, 173 (2018) 597.   DOI
11 J. M. Park, H. J. Kim and J. W. Yoo: Appl. Chem. Eng., 27 (2016) 35.   DOI
12 S. Chen, M. Cheng, Y. Lang, C. Tian, H. Wei and C.-A. Wang: J. Adv. Ceram., 8 (2019) 39.   DOI
13 S. Sadeghi-Niaraki, B. Ghasemi, A. Habibolahzadeh and E. Ghasemi: Mater. Sci. Eng. B, 262 (2020) 114752.   DOI
14 H. J. Lee, D. S. Kim, S.-H. Lee, H. M. Lim, B.-K. Choi, K.-J. Kang, J. I. Jeong and K.-S. Cho: Korean J. Mater. Res., 25 (2015) 61.   DOI
15 E. Ozel and S. Turan: J. Eur. Ceram. Soc., 23 (2003) 2097.   DOI
16 S. Mestre, M. D. Palacios and P. Agut: J. Eur. Ceram. Soc., 32 (2012) 1995.   DOI
17 S. Chen, J. Zhu, X. Wu, Q. Han and X. Wang: ACS Nano, 4 (2010) 2822.   DOI
18 N. Zhang, L. Li, Y. Guo, J. He, R. Wu, L. Song, G. Zhang, J. Zhao, D. Wang and H. He: Appl. Catal. B, 270 (2020) 118860.   DOI