• Title/Summary/Keyword: $Fe_2O_3$

Search Result 3,844, Processing Time 0.035 seconds

$Fe_2O_3$ Aggregation and Sintering of Ba-Ferrite ($Fe_2O_3$ 응집상태와 Ba-Ferrite의 소결성)

  • Hyo-Duk Nam;Sang-Hee Cho
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.318-324
    • /
    • 1981
  • The effects of$ Fe_2O_3$ aggregation on the sintering of Ba-ferrite (BaFe$_{12}O_{19}$) were studied. $BaCO_3-Fe_2O_3$ mixtures were prepared by partial precipitation mixing and ball-mill mixing method using two different $Fe_2O_3 $powders. Techniques employed were TG, XRD and SEM. X-ray diffraction analysis showed that the over all reaction basically consists of the two consecutive reaction; $BaCO_3 + 6Fe_2O_3\;{\longrightarrow}\;BaFe_2O_3 + 5Fe_2O_3 + CO_2{\uparrow}\;BaFe_2O_4 + 5Fe_2O_3 \;{\longrightarrow}\;BaFe_{12}O_{19}$ It is also shown that the aggregation state of $Fe_2O_3$ raw materials, as well as the mixing method, has a remarkable effect on solid state reaction between $BaCO_3\;and\;Fe_2O_3$.

  • PDF

Effects of $Fe_2O_3$ Addition on the Properties of MgO and Dolomite (마그네시아와 돌로마이트의 특성에 미치는 $Fe_2O_3$ 의 첨가영향)

  • 박재원;홍기곤
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.738-746
    • /
    • 1997
  • MgO clinker and two kinds of dolomite clinkers with different microstructures and CaO contents were used as starting materials, and the effects of Fe2O3 addition on the properties of MgO and dolomite were investigated in the range of 2 to 8 wt% of Fe2O3 content. Secondary phases contributed to densification of MgO-Fe2O3 and dolomite-Fe2O3 were magnesioferrite and dicalciumferrite, respectively. Sinterabilities of MgO-Fe2O3 and dolomite-Fe2O3 were directly proportional to the amount of secondary phases. Also, sinterability of dolomite itself was dependent on the microstructure of starting material including distribution of CaO and MgO as well as the addition amount of Fe2O3. The flexural strength of MgO-Fe2O3 content was almost constant. The hydration resistance of dolomite with large size of MgO and discontinuous distribution of CaO was higher than that of dolomite with small size of MgO and continuous distribution of CaO. Also, the minimum content of Fe2O3 to prevent they hydration of dolomite was about 4wt%. As increasing Fe2O3 content, the penetration resistance of MgO-Fe2O3 was improved by the increment of magnesioferrite. On the other hand, the penetration resistance of dolomite-Fe2O3 was decreased because of the increment of dicalciumferrite having low melting point.

  • PDF

The Study on Solid-State Reaction Between MgO Single Crystal and $Fe_2O_3$ Powder (단결정 MgO와 분말 $Fe_2O_3$간의 고상 반응 연구)

  • 김성재;박재우
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.234-238
    • /
    • 1995
  • MgFe2O4 formation, grain growth in Fe2O3, Fe solid-solution limit in MgO for MgO-Fe2O3 mixture were studied by means of investigating the distribution of phases and compositions in reaction area between MgO and Fe2O3. The reaction area at equlibrium was composed with MgO-FexO matrix and MgFe2O4 precipitation, MgFe2O4 was formed by precipitating from MgO-FexO matrix dependent on oxygen partial pressure. Fe contents was exponentially decreased with diffusion distance in MgO single crystal, and thus Fe solid-solution limitation in MgO was about 4mol%. The grain growth rate in Fe2O3 base was increased with Mg contents diffused from MgO single crystal.

  • PDF

Formation and Color of the Spinel Solid-Solution in $ZnO-Fe_2O_3-TiO_2-SnO_2$ System ($ZnO-Fe_2O_3-TiO_2-SnO_2$계 Spinel 안료 고용체의 생성과 발색)

  • 박철원;이진성;이웅재
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.213-219
    • /
    • 1994
  • The formations of spinel and colors of ZnO-Fe2O3-TiO2-SnO2 system have been researched on the basis of ZnO-Fe2O3 system. Specimens were prepared by substituting Fe3+, with Ti4+ or Sn4+ when mole ratios between Fe3+ and Ti4+ or between Fe3+ and Sn4+ were 0.2 mole. The reflectance measurement and X-ray diffraction analysis of the formation of spinel and the colors of there specimens were carried out. ZnO-Fe2O3 system in which Fe2O3 was substituted with SnO2 and TiO2 was formed the spinel structure of 2ZnO.TiO2, 2ZnO.SnO2, ZnO.Fe2O3. The stable stains which were colored with yellow and brown could be manufactured.

  • PDF

Effects of Heat Treatment Conditions of FeC2O4·2H2O on the Formation of Fe3O4-δ (FeC2O4·2H2O의 열처리 조건이 Fe3O4-δ 형성에 미치는 영향)

  • Oh, Kyoung-Hwan;Park, Won-Shik;Rhee, Sang-In;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.620-625
    • /
    • 2012
  • A general synthetic method to make $Fe_3O_{4-{\delta}}$ (activated magnetite) is the reduction of $Fe_3O_4$ by $H_2$ atmosphere. However, this process has an explosion risk. Therefore, we studied the process of synthesis of $Fe_3O_{4-{\delta}}$ depending on heat-treatment conditions using $FeC_2O_4{\cdot}2H_2O$ in Ar atmosphere. The thermal decomposition characteristics of $FeC_2O_4{\cdot}2H_2O$ and the ${\delta}$-value of $Fe_3O_{4-{\delta}}$ were analyzed with TG/DTA in Ar atmosphere. ${\beta}-FeC_2O_4{\cdot}2H_2O$ was synthesized by precipitation method using $FeSO_4{\cdot}7H_2O$ and $(NH_4)_2C_2O_4{\cdot}H_2O$. The concentration of the solution was 0.1 M and the equivalent ratio was 1.0. ${\beta}-FeC_2O_4{\cdot}2H_2O$ was decomposed to $H_2O$ and $FeC_2O$4 from $150^{\circ}C$ to $200^{\circ}C$. $FeC_2O4$ was decomposed to CO, $CO_2$, and $Fe_3O_4$ from $200^{\circ}C$ to $250^{\circ}C$. Single phase $Fe_3O_4$ was formed by the decomposition of ${\beta}-FeC_2O_4{\cdot}2H_2O$ in Ar atmosphere. However, $Fe_3C$, Fe and $Fe_4N$ were formed as minor phases when ${\beta}-FeC_2O_4{\cdot}2H_2O$ was decomposed in $N_2$ atmosphere. Then, $Fe_3O_4$ was reduced to $Fe_3O_{4-{\delta}}$ by decomposion of CO. The reduction of $Fe_3O_4$ to $Fe_3O_{4-{\delta}}$ progressed from $320^{\circ}C$ to $400^{\circ}C$; the reaction was exothermic. The degree of exothermal reaction was varied with heat treatment temperature, heating rate, Ar flow rate, and holding time. The ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was greatly influenced by the heat treatment temperature and the heating rate. However, Ar flow rate and holding time had a minor effect on ${\delta}$-value.

Synthesis of Fe3O4-δ Using FeC2O4·2H2O by Thermal Decomposition in N2 Atmosphere (N2분위기에서 FeC2O4·2H2O의 열분해에 의한 Fe3O4-δ합성)

  • Park, Won-Shik;Oh, Kyoung-Hwan;An, Suk-Jin;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.253-258
    • /
    • 2012
  • Activated magnetite ($Fe_3O_{4-{\delta}}$) was applied to reducing $CO_2$ gas emissions to avoid greenhouse effects. Wet and dry methods were developed as a $CO_2$ removal process. One of the typical dry methods is $CO_2$ decomposition using activated magnetite ($Fe_3O_{4-{\delta}}$). Generally, $Fe_3O_{4-{\delta}}$ is manufactured by reduction of $Fe_3O_4$ by $H_2$ gas. This process has an explosion risk. Therefore, a non-explosive process to make $Fe_3O_{4-{\delta}}$ was studied using $FeC_2O_4{\cdot}2H_2O$ and $N_2$. $FeSO_4{\cdot}7H_2O$ and $(NH_4)_2C_2O_4{\cdot}H_2O$ were used as starting materials. So, ${\alpha}-FeC_2O_4{\cdot}2H_2O$ was synthesized by precipitation method. During the calcination process, $FeC_2O_4{\cdot}2H_2O$ was decomposed to $Fe_3O_4$, CO, and $CO_2$. The specific surface area of the activated magnetite varied with the calcination temperature from 15.43 $m^2/g$ to 9.32 $m^2/g$. The densities of $FeC_2O_4{\cdot}2H_2O$ and $Fe_3O_4$ were 2.28 g/$cm^3$ and 5.2 g/$cm^3$, respectively. Also, the $Fe_3O_4$ was reduced to $Fe_3O_{4-{\delta}}$ by CO. From the TGA results in air of the specimen that was calcined at $450^{\circ}C$ for three hours in $N_2$ atmosphere, the ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was estimated. The ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was 0.3170 when the sample was heat treated at $400^{\circ}C$ for 3 hours and 0.6583 when the sample was heat treated at $450^{\circ}C$ for 3 hours. $Fe_3O_{4-{\delta}}$ was oxidized to $Fe_3O_4$ when $Fe_3O_{4-{\delta}}$ was reacted with $CO_2$ because $CO_2$ is decomposed to C and $O_2$.

Fabrication of ${\gamma}-Fe_2O_3$ Thin Film for Chemical Sensor Application (화학센서용 다공성 ${\gamma}-Fe_2O_3$ 박막 제조)

  • Kim, Bum-Jin;Lim, Il-Sung;Jang, Gun-Eik
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.171-176
    • /
    • 1999
  • ${\gamma}-Fe_2O_3$ thin films on $Al_2O_3$ substrate were prepared by the oxidation of $Fe_3O_4$ thin films processed by PECVD(Plasma-Enhanced Chemical Vapor Deposition) technique. The phase transformation of ${\gamma}-Fe_2O_3$ thin films was mainly controlled by the substrate temperature and oxidation process of $Fe_3O_4$ phase. $Fe_3O_4$ phase was obtained at the deposition temperature of $200{\sim}300^{\circ}C$. $Fe_3O_4$ phase could be transformed into ${\gamma}-Fe_2O_3$ phase under controlled oxidation at $280{\sim}300^{\circ}C$. $Fe_3O_4$ and ${\gamma}-Fe_2O_3$ obtained by oxidation of $Fe_3O_4$ phase had the same spinel structure and were coexisted. The oxidized ${\gamma}-Fe_2O_3$ thin film on $Al_2O_3$ substrate showed a porous island structure.

  • PDF

Preparation of hybrid Fe3O4 nanoparticles for biomedical applications (생의학적 응용을 위한 Fe3O4 복합 나노입자의 제조)

  • Bae, Sung-Su;Nguyen, The Dung;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.36
    • /
    • pp.77-81
    • /
    • 2016
  • Superparamagnetic $Fe_3O_4$ nanoparticles with particle size from 10 to 20 nm were synthesized by coprecipitation method. Subsequently, the $Fe_3O_4$ nanoparticles were used to fabricate $Fe_3O_4/SiO_2$ core-shell nanoparticles by sol-gel method. The $Fe_3O_4/SiO_2$ nanoparticles synthesized by sol-gel method exhibit the high uniformities of particle size and shape. We also investigated the heating characteristics of $Fe_3O_4$ and $Fe_3O_4/SiO_2$ nanoparticles for biomedical applications. The $Fe_3O_4$ nanoparticles show the faster temperature increase and the higher specific loss power(SLP) value than the $Fe_3O_4/SiO_2$ nanoparticles.

  • PDF

Effect of Reductive Salts on Dissolution of ${\alpha}-Fe_2O_3$ in Acidic Solutions (산성용액 내에서${\alpha}-Fe_2O_3$의 용해에 대한 환원성 염의 효과)

  • Jeong-Ik Lee;Lee-Mook Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.194-200
    • /
    • 1983
  • Effect of metallic salts added to the ${\alpha}-Fe_2O_3-HCl\;or\;{\alpha}-Fe_2O_3-H_2SO_4$ reaction systems were investigated by colorimetric and gravimetric determinations. While reductive salts exhibited remarkably enhanced reaction rate, non-reductive salts showed inhibitive results. We supposed that the improvement of dissolution rate of ${\alpha}-Fe_2O_3$ by the addition of $FeCl_2$, a reductive salt, to the ${\alpha}-Fe_2O_3-HCl$ system can be attributed to the formation of chloro-bridge between $Fe^{3+}\;and\; Fe^{2+}$, and therefore some partial electronic charge transfer from $Fe^{2+}\;to\;Fe^{3+}$ on the surface of ${\alpha}-Fe_2O_3$ will be easily achieved through the bridged bond. The transferred charge to the surface will reduce the positive charge of initial $Fe^{3+}$, and also result to reduce the lattice energy of that site. Assuming tothat there is a linear relationship between the lattice energy change and the change of activation energy of the reaction system, the transferred partial electronic charge to $Fe^{3+}$ of ${\alpha}-Fe_2O_3$ surface was calculated to be ca. 0.36e.

  • PDF

Fabrication of$Al_2O_3/Fe$ composite by reaction sintering (반응소결법에 의한 $Al_2O_3/Fe$ 복합재료 제조)

  • 김송희;윤여범
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.185-190
    • /
    • 1999
  • An $Al_2O_3/Fe$ composite was synthesized through the double stage processes by a reaction sintering which requires simple process and equipments but provides near-net-shape, a reduction/oxidation process for 5 hrs at $650^{\circ}C$ was followed by sintering at $1200^{\circ}C$ to form an $Al_2O_3/Fe$ composite. The composite processed through the double stage sintering are mainly consists of $\alpha$-Fe and ${\alpha}Al_2O_3$ with minor amount of $FeAl_2O_4$, a spinnel structure which is known to prevent Fe from filling up the pores and good contact with $Al_2O_3/Fe$ particles.

  • PDF