• Title/Summary/Keyword: 워터 자켓

Search Result 3, Processing Time 0.018 seconds

Factors Influencing Characteristics of Sand Core for Water Jacket in Automotive Cylinder Blocks Casting (자동차 실린더 블록 주조에서 워터 자켓용 샌드 코어 특성에 영향을 미치는 인자)

  • Kim, Ki-Jun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.185-191
    • /
    • 2021
  • The characteristics of the foundry sand were analyzed for water jacket core required to prevent structural deformation from the heat generated in the cylinder bore during the casting of the cylinder block of an automobile. The sand core tensile strength tester, AFS-GFN, and optical microscope were used to evaluate the its properties. If the SiO2 content is high in the foundry sand, the dimensional defects and veining defects occur due to high temperature expansion. Also, if it is too low, the core breakage, porosities, chemical burn-on defects occur. The particle size index and grain shape influenced the core strength and resin consumption, resulting in fluctuations in defect types. The higher the alkalinity of the dried sand, the lower the core strength. And the more basic, the lower the core strength. At the resin content of 1.6~1.8%, the increase in core strength after 1 hour curing was approximately at its maximum.

Robust Design of the Mold Oscillator of continuous Casting Machine (연주 설비용 몰드 오실레이터의 강건 설계)

  • Park, Y. T.;Lee, C. S.;Hwang, W.;Kang, G. P.;Shin, G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.782-785
    • /
    • 2002
  • The goal of this research is to deduce the robust design of mold oscillator of the continuous casting machine. In the case of the system operated in the high temperature condition, the structural problems caused by the heat are dominant. Therefore, the thermal stress is considered with the connection of the thermal and structural analyses. The cooling ability of the water jacket was estimated and the robustness of mold oscillator was judged with the displacement and stress distributions obtained by the finite element method. The analytic results were compared with the real values of the iron mill.

  • PDF

Numerical and Theoretical Study on the Fluid Flow in the Cooling System of a Marine Diesel Engine (선박용 디젤엔진의 냉각수 유동에 대한 수치해석적 및 이론적 연구)

  • Suh, Yong-Kweon;Heo, Seong-Gyu;Chung, Sung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.119-130
    • /
    • 2008
  • Diesel engine is one of the most expensive and important components in a ship. Many researchers are interested in increasing the performance of diesel engines. Design of an optimum cooling system should also contribute to the enhancement of the performance as well as the efficiency of engines. In this study, we investigated the flow pattern within the cooling system of a marine diesel engine by using numerical simulation prior to the study of the heat-transfer problem. The engine cooling system is composed of five cooling units each unit containing a water-jacket and a cylinder head. Based on the calculated data, we also conducted theoretical analysis that can predict the flow-rate delivery in each of the five units.