DOI QR코드

DOI QR Code

Porcine OCT4 reporter system as a tool for monitoring pluripotency states

  • Kim, Seung-Hun (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Lee, Chang-Kyu (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University)
  • 투고 : 2021.11.25
  • 심사 : 2021.12.18
  • 발행 : 2021.12.31

초록

Pluripotent stem cells could self-renew and differentiate into various cells. In particular, porcine pluripotent stem cells are useful for preclinical therapy, transgenic animals, and agricultural usage. These stem cells have naïve and primed pluripotent states. Naïve pluripotent stem cells represented by mouse embryonic stem cells form chimeras after blastocyst injection. Primed pluripotent stem cells represented by mouse epiblast stem cells and human embryonic stem cells. They could not produce chimeras after blastocyst injection. Populations of embryonic stem cells are not homogenous; therefore, reporter systems are used to clarify the status of stem cells and to isolate the cells. For this reason, studies of the OCT4 reporter system have been conducted for decades. This review will discuss the naïve and primed pluripotent states and recent progress in the development of porcine OCT4 reporter systems.

키워드

과제정보

This work was supported by the BK21 Four program and the Korea Evaluation Institute of Industrial Technology (KEIT; 20012411).

참고문헌

  1. Bamps S and Hope IA. 2008. Large-scale gene expression pattern analysis, in situ, in Caenorhabditis elegans. Brief. Funct. Genomic. Proteomic. 7:175-183. https://doi.org/10.1093/bfgp/eln013
  2. Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L. 2007. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191-195. https://doi.org/10.1038/nature05950
  3. Buecker C, Chen HH, Polo JM, Daheron L, Bu L, Barakat TS, Okwieka P, Porter A, Gribnau J, Hochedlinger K, Geijsen N. 2010. A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells. Cell Stem Cell 6:535-546. https://doi.org/10.1016/j.stem.2010.05.003
  4. Buecker C and Geijsen N. 2010. Different flavors of pluripotency, molecular mechanisms, and practical implications. Cell Stem Cell 7:559-564. https://doi.org/10.1016/j.stem.2010.10.007
  5. Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying QL, Smith A. 2008. Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287-1298. https://doi.org/10.1016/j.cell.2008.12.007
  6. Cheng X, Meng S, Deng J, Lai W, Wang H. 2011. Identification and characterization of the Oct4 extended transcriptional regulatory region in Guanzhong dairy goat. Genome 54:812-818. https://doi.org/10.1139/g11-047
  7. Choi HW, Joo JY, Hong YJ, Kim JS, Song H, Lee JW, Wu G, Scholer HR, Do JT. 2016. Distinct enhancer activity of Oct4 in naive and primed mouse pluripotency. Stem Cell Reports 7:911-926. https://doi.org/10.1016/j.stemcr.2016.09.012
  8. Choi KH and Lee CK. 2019. Pig pluripotent stem cells as a candidate for biomedical application. J. Anim. Reprod. Biotechnol. 34:139-147. https://doi.org/10.12750/JARB.34.3.139
  9. Choi KH, Lee DK, Kim SW, Woo SH, Kim DY, Lee CK. 2019. Chemically defined media can maintain pig pluripotency network in vitro. Stem Cell Reports 13:221-234. https://doi.org/10.1016/j.stemcr.2019.05.028
  10. Choi KH, Lee DK, Oh JN, Kim SH, Lee M, Jeong J, Choe GC, Lee CK. 2020. Generation of neural progenitor cells from pig embryonic germ cells. J. Anim. Reprod. Biotechnol. 35:42-49. https://doi.org/10.12750/JARB.35.1.42
  11. Evans MJ and Kaufman MH. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154-156. https://doi.org/10.1038/292154a0
  12. Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A, Rais Y, Shipony Z, Mukamel Z, Krupalnik V, Zerbib M, Geula S, Caspi I, Schneir D, Shwartz T, Gilad S, Amann-Zalcenstein D, Benjamin S, Amit I, Tanay A, Massarwa R, Novershtern N, Hanna JH. 2013. Derivation of novel human ground state naive pluripotent stem cells. Nature 504:282-286. https://doi.org/10.1038/nature12745
  13. Gardner RL and Cockroft DL. 1998. Complete dissipation of coherent clonal growth occurs before gastrulation in mouse epiblast. Development 125:2397-2402. https://doi.org/10.1242/dev.125.13.2397
  14. Gerrard L, Zhao D, Clark AJ, Cui W. 2005. Stably transfected human embryonic stem cell clones express OCT4-specific green fluorescent protein and maintain self-renewal and pluripotency. Stem Cells 23:124-133. https://doi.org/10.1634/stemcells.2004-0102
  15. Guedes AMV, Henrique D, Abranches E. 2016. Dissecting transcriptional heterogeneity in pluripotency: single cell analysis of mouse embryonic stem cells. Methods Mol. Biol. 1516:101-119. https://doi.org/10.1007/7651_2016_356
  16. Guo G, von Meyenn F, Santos F, Chen Y, Reik W, Bertone P, Smith A, Nichols J. 2016. Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Reports 6:437-446. https://doi.org/10.1016/j.stemcr.2016.02.005
  17. Guo G, Yang J, Nichols J, Hall JS, Eyres I, Mansfield W, Smith A. 2009. Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136:1063-1069. https://doi.org/10.1242/dev.030957
  18. Hall V. 2008. Porcine embryonic stem cells: a possible source for cell replacement therapy. Stem Cell Rev. 4:275-282. https://doi.org/10.1007/s12015-008-9040-2
  19. Hanna J, Cheng AW, Saha K, Kim J, Lengner CJ, Soldner F, Cassady JP, Muffat J, Carey BW, Jaenisch R. 2010a. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc. Natl. Acad. Sci. U. S. A. 107:9222-9227. https://doi.org/10.1073/pnas.1004584107
  20. Hanna J, Markoulaki S, Mitalipova M, Cheng AW, Cassady JP, Staerk J, Carey BW, Lengner CJ, Foreman R, Love J, Gao Q, Kim J, Jaenisch R. 2009. Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell 4:513-524. https://doi.org/10.1016/j.stem.2009.04.015
  21. Hanna JH, Saha K, Jaenisch R. 2010b. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143:508-525. https://doi.org/10.1016/j.cell.2010.10.008
  22. Heard E. 2004. Recent advances in X-chromosome inactivation. Curr. Opin. Cell Biol. 16:247-255. https://doi.org/10.1016/j.ceb.2004.03.005
  23. Huang L, Fan N, Cai J, Yang D, Zhao B, Ouyang Z, Gu W, Lai L. 2011. Establishment of a porcine Oct-4 promoter-driven EGFP reporter system for monitoring pluripotency of porcine stem cells. Cell. Reprogram. 13:93-98. https://doi.org/10.1089/cell.2010.0069
  24. Jerabek S, Merino F, Scholer HR, Cojocaru V. 2014. OCT4: dynamic DNA binding pioneers stem cell pluripotency. Biochim. Biophys. Acta 1839:138-154. https://doi.org/10.1016/j.bbagrm.2013.10.001
  25. Kim SH, Choi KH, Jeong J, Lee M, Lee DK, Oh JN, Choe GC, Go DM, Kim DY, Lee CK. 2021a. Pig embryonic stem cell line with porcine-specific OCT4 upstream region based dual reporter system. Stem Cell Res. 57:102609. https://doi.org/10.1016/j.scr.2021.102609
  26. Kim SH, Choi KH, Lee DK, Lee M, Hwang JY, Lee CK. 2019. Identification and characterization of the OCT4 upstream regulatory region in Sus scrofa. Stem Cells Int. 2019:2130973. https://doi.org/10.1155/2019/2130973
  27. Kim SH, Choi KH, Lee M, Lee DK, Lee CK. 2021b. Porcine OCT4 reporter system can monitor species-specific pluripotency during somatic cell reprogramming. Cell. Reprogram. 23:168-179. https://doi.org/10.1089/cell.2021.0001
  28. Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson RE, Schulze EN, Song H, Hsieh CL, Pera MF, Ying QL. 2008. Germline competent embryonic stem cells derived from rat blastocysts. Cell 135:1299-1310. https://doi.org/10.1016/j.cell.2008.12.006
  29. Li Y, Zhang Q, Yin X, Yang W, Du Y, Hou P, Ge J, Liu C, Zhang W, Zhang X, Wu Y, Li H, Liu K, Wu C, Song Z, Zhao Y, Shi Y, Deng H. 2011. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res. 21:196-204. https://doi.org/10.1038/cr.2010.142
  30. Liu S, Bou G, Sun R, Guo S, Xue B, Wei R, Cooney AJ, Liu Z. 2015. Sox2 is the faithful marker for pluripotency in pig: evidence from embryonic studies. Dev. Dyn. 244:619-627. https://doi.org/10.1002/dvdy.24248
  31. Martin GR. 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. U. S. A. 78:7634-7638. https://doi.org/10.1073/pnas.78.12.7634
  32. Matsui Y, Zsebo K, Hogan BL. 1992. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70:841-847. https://doi.org/10.1016/0092-8674(92)90317-6
  33. Medvedev SP, Shevchenko AI, Elisaphenko EA, Nesterova TB, Brockdorff N, Zakian SM. 2008. Structure and expression pattern of Oct4 gene are conserved in vole Microtus rossiae-meridionalis. BMC Genomics 9:162. https://doi.org/10.1186/1471-2164-9-162
  34. Minucci S, Botquin V, Yeom YI, Dey A, Sylvester I, Zand DJ, Ohbo K, Ozato K, Scholer HR. 1996. Retinoic acid-mediated down-regulation of Oct3/4 coincides with the loss of promoter occupancy in vivo. EMBO J. 15:888-899. https://doi.org/10.1002/j.1460-2075.1996.tb00423.x
  35. Nichols J and Smith A. 2009. Naive and primed pluripotent states. Cell Stem Cell 4:487-492. https://doi.org/10.1016/j.stem.2009.05.015
  36. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379-391. https://doi.org/10.1016/S0092-8674(00)81769-9
  37. Nordhoff V, Hubner K, Bauer A, Orlova I, Malapetsa A, Scholer HR. 2001. Comparative analysis of human, bovine, and murine Oct-4 upstream promoter sequences. Mamm. Genome 12:309-317. https://doi.org/10.1007/s003350010279
  38. Nowak-Imialek M, Kues WA, Petersen B, Lucas-Hahn A, Herrmann D, Haridoss S, Oropeza M, Lemme E, Scholer HR, Carnwath JW, Niemann H. 2011. Oct4-enhanced green fluorescent protein transgenic pigs: a new large animal model for reprogramming studies. Stem Cells Dev. 20:1563-1575. https://doi.org/10.1089/scd.2010.0399
  39. Palmieri SL, Peter W, Hess H, Scholer HR. 1994. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev. Biol. 166:259-267. https://doi.org/10.1006/dbio.1994.1312
  40. Park JK, Kim HS, Uh KJ, Choi KH, Kim HM, Lee T, Yang BC, Kim HJ, Ka HH, Kim H, Lee CK. 2013. Primed pluripotent cell lines derived from various embryonic origins and somatic cells in pig. PLoS One 8:e52481. https://doi.org/10.1371/journal.pone.0052481
  41. Resnick JL, Bixler LS, Cheng L, Donovan PJ. 1992. Long-term proliferation of mouse primordial germ cells in culture. Nature 359:550-551. https://doi.org/10.1038/359550a0
  42. Rizzino A and Wuebben EL. 2016. Sox2/Oct4: a delicately balanced partnership in pluripotent stem cells and embryogenesis. Biochim. Biophys. Acta 1859:780-791. https://doi.org/10.1016/j.bbagrm.2016.03.006
  43. Rossant J. 2008. Stem cells and early lineage development. Cell 132:527-531. https://doi.org/10.1016/j.cell.2008.01.039
  44. Singer ZS, Yong J, Tischler J, Hackett JA, Altinok A, Surani MA, Cai L, Elowitz MB. 2014. Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol. Cell 55:319-331. https://doi.org/10.1016/j.molcel.2014.06.029
  45. Sun WS, Chun JL, Do JT, Kim DH, Ahn JS, Kim MK, Hwang IS, Kwon DJ, Hwang SS, Lee JW. 2016. Construction of a dualfluorescence reporter system to monitor the dynamic progression of pluripotent cell differentiation. Stem Cells Int. 2016:1390284. https://doi.org/10.1155/2016/1390284
  46. Takahashi K and Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663-676. https://doi.org/10.1016/j.cell.2006.07.024
  47. Tanaka TS. 2009. Transcriptional heterogeneity in mouse embryonic stem cells. Reprod. Fertil. Dev. 21:67-75. https://doi.org/10.1071/RD08219
  48. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD. 2007. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196-199. https://doi.org/10.1038/nature05972
  49. Theunissen TW, Powell BE, Wang H, Mitalipova M, Faddah DA, Reddy J, Fan ZP, Maetzel D, Ganz K, Shi L, Lungjangwa T, Imsoonthornruksa S, Stelzer Y, Rangarajan S, D'Alessio A, Zhang J, Gao Q, Dawlaty MM, Young RA, Gray NS, Jaenisch R. 2014. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15:524-526. https://doi.org/10.1016/j.stem.2014.09.003
  50. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282:1145-1147. https://doi.org/10.1126/science.282.5391.1145
  51. Wu G and Scholer HR. 2014. Role of Oct4 in the early embryo development. Cell Regen. 3:7.
  52. Yang HM, Do HJ, Oh JH, Kim JH, Choi SY, Cha KY, Chung HM, Kim JH. 2005. Characterization of putative cis-regulatory elements that control the transcriptional activity of the human Oct4 promoter. J. Cell. Biochem. 96:821-830. https://doi.org/10.1002/jcb.20588
  53. Yeom YI, Fuhrmann G, Ovitt CE, Brehm A, Ohbo K, Gross M, Hubner K, Scholer HR. 1996. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122:881-894. https://doi.org/10.1242/dev.122.3.881