DOI QR코드

DOI QR Code

Activating and inactivating mutations of the human, rat, equine and eel luteinizing hormone/chorionic gonadotropin receptors (LH/CGRs)

  • Min, Kwan-Sik (Institute of Genetic Engineering, Hankyong National University) ;
  • Byambaragchaa, Munkhzaya (Institute of Genetic Engineering, Hankyong National University) ;
  • Choi, Seung-Hee (Department of Animal Biotechnology, Graduate School of Hankyong National University) ;
  • Joo, Hyo-Eun (Department of Animal Life Science, Hankyong National University) ;
  • Kim, Sang-Gwon (Department of Animal Life Science, Hankyong National University) ;
  • Kim, Yean-Ji (Department of Animal Life Science, Hankyong National University) ;
  • Park, Gyeong-Eun (Department of Animal Life Science, Hankyong National University)
  • 투고 : 2021.11.19
  • 심사 : 2021.12.03
  • 발행 : 2021.12.31

초록

Mutations in the luteinizing hormone/chorionic gonadotropin receptors (LH/CGRs), representatives of the G protein-coupled receptor family, have been rapidly identified over the last 20 years. This review aims to compare and analyze the data reported the activating and inactivating mutations of the LH/CGRs between human, rat, equine and fish, specifically (Japanese eel Anguilla japonica). Insights obtained through detailed study of these naturally-occurring mutations provide a further update of structure-function relationship of these receptors. Specifically, we present a variety of data on eel LH/CGR. These results provide important information about LH/CGR function in fish and the regulation of mutations of the highly conserved amino acids in glycoprotein hormone receptors.

키워드

참고문헌

  1. Althumairy D, Zhang X, Baez N, Barisas G, Roess DA, Bousfield GR, Crans DC. 2020. Glycoprotein G-protein coupled receptors in disease: luteinizing hormone receptors and follicle stimulating hormone receptors. Diseases 8:35. https://doi.org/10.3390/diseases8030035
  2. Ascoli M. 2007. Potential Leydig cell mitogenic signals generated by the wild-type and constitutively active mutants of the lutropin/choriogonadotropin receptor (LHR). Mol. Cell. Endocrinol. 260-262:244-248. https://doi.org/10.1016/j.mce.2005.09.016
  3. Bhaskaran RS and Ascoli M. 2005. The post-endocytotic fate of the gonadotropin receptors is an important determinant of the desensitization of gonadotropin responses. J. Mol. Endocrinol. 34:447-457. https://doi.org/10.1677/jme.1.01745
  4. Bradbury FA, Kawate N, Foster CM, Menon KM. 1997. Post-translational processing in the Golgi plays a critical role in the trafficking of the luteinizing hormone/human chorionic gonadotropin receptor to the cell surface. J. Biol. Chem. 272:5921-5926. https://doi.org/10.1074/jbc.272.9.5921
  5. Byambaragchaa M, Ahn TY, Choi SH, Kang MH, Min KS. 2021b. Functional characterization of naturally-occurring constitutively activating/inactivating mutations in equine follicle-stimulating hormone receptor (eFSHR). Anim. Biosci. (inpress).
  6. Byambaragchaa M, Choi SH, Kim DW, Min KS. 2021c. Constitutive activating eel luteinizing hormone receptors induce constitutively signal transduction and inactivating mutants impair biological activity. Dev. Reprod. 25:133-143. https://doi.org/10.12717/DR.2021.25.3.133
  7. Byambaragchaa M, Kim JS, Park HK, Kim DJ, Hong SM, Kang MH, Min KS. 2020. Constitutive activation and inactivation of mutations inducing cell surface loss of receptor and impairing of signal transduction of agonist-stimulated eel follicle-stimulating hormone receptor. Int. J. Mol. Sci. 21:7075. https://doi.org/10.3390/ijms21197075
  8. Byambaragchaa M, Seong HK, Choi SH, Kim DJ, Kang MH, Min KS. 2021a. Constitutively activating mutants of equine LH/CGR constitutively induce signal transduction and inactivating mutations impair biological activity and cell-surface receptor loss in vitro. Int. J. Mol. Sci. 22:10723. https://doi.org/10.3390/ijms221910723
  9. Dhanwada KR, Vijapurkar U, Ascoli M. 1996. Two mutations of the lutropin/choriogonadotropin receptor that impair signal transduction also interfere with receptor-mediated endocytosis. Mol. Endocrinol. 10:544-554. https://doi.org/10.1210/mend.10.5.8732685
  10. Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS, Yandell DW, Sandberg MA, Berson EL. 1990. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343:364-366. https://doi.org/10.1038/343364a0
  11. Foster SR and Brauner-Osborne H. 2018. Investigating internalization and intracellular trafficking of GPCRs: new techniques and real-time experimental approaches. Handb. Exp. Pharmacol. 245:41-61.
  12. Foster SR, Hauser AS, Vedel L, Strachan RT, Huang XP, Gavin AC, Shah SD, Nayak AP, Haugaard-Kedstrom LM, Penn RB, Roth BL, Brauner-Osborne H, Gloriam DE. 2019. Discovery of human signaling systems: pairing peptides to G protein-coupled receptors. Cell 179:895-908.e21. https://doi.org/10.1016/j.cell.2019.10.010
  13. Galet C and Ascoli M. 2006. A constitutively active mutant of the human lutropin receptor (hLHR-L457R) escapes lysosomal targeting and degradation. Mol. Endocrinol. 20:2931-2945. https://doi.org/10.1210/me.2006-0138
  14. Galet C, Hirakawa T, Ascoli M. 2004. The postendocytotic trafficking of the human lutropin receptor is mediated by a transferable motif consisting of the C-terminal cysteine and an upstream leucine. Mol. Endocrinol. 18:434-446. https://doi.org/10.1210/me.2003-0293
  15. Galet C, Min L, Narayanan R, Kishi M, Weigel NL, Ascoli M. 2003. Identification of a transferable two-amino-acid motif (GT) present in the C-terminal tail of the human lutropin receptor that redirects internalized G protein-coupled receptors from a degradation to a recycling pathway. Mol. Endocrinol. 17:411-422. https://doi.org/10.1210/me.2002-0161
  16. Gromoll J, Schulz A, Borta H, Gudermann T, Teerds KJ, Greschniok A, Nieschlag E, Seif FJ. 2002. Homozygous mutation within the conserved Ala-Phe-Asn-Glu-Thr motif of exon 7 of the LH receptor causes male pseudohermaphroditism. Eur. J. Endocrinol. 147:597-608. https://doi.org/10.1530/eje.0.1470597
  17. Hai L, McGee SR, Rabideau AC, Paquet M, Narayan P. 2015. Infertility in female mice with a gain-of-function mutation in the luteinizing hormone receptor is due to irregular estrous cyclicity, anovulation, hormonal alterations, and polycystic ovaries. Biol. Reprod. 93:16.
  18. Hirakawa T and Ascoli M. 2003. The lutropin/choriogonadotropin receptor-induced phosphorylation of the extracellular signal-regulated kinases in Leydig cells is mediated by a protein kinase A-dependent activation of Ras. Mol. Endocrinol. 17:2189-2200. https://doi.org/10.1210/me.2003-0205
  19. Ji I and Ji TH. 1991. Asp383 in the second transmembrane domain of the lutropin receptor is important for high affinity hormone binding and cAMP production. J. Biol. Chem. 266:14953-14957. https://doi.org/10.1016/S0021-9258(18)98570-4
  20. Jones B, McGlone ER, Fang Z, Pickford P, Correa IR Jr, Oishi A, Jockers R, Inoue A, Kumar S, Gorlitz F, Dunsby C, French PMW, Rutter GA, Tan T, Tomas A, Bloom SR. 2021. Genetic and biased agonist-mediated reductions in β-arrestin recruitment prolong cAMP signaling at glucagon family receptors. J. Biol. Chem. 296:100133. https://doi.org/10.1074/jbc.RA120.016334
  21. Kishi M, Liu X, Hirakawa T, Reczek D, Bretscher A, Ascoli M. 2001. Identification of two distinct structural motifs that, when added to the C-terminal tail of the rat LH receptor, redirect the internalized hormone-receptor complex from a degradation to a recycling pathway. Mol. Endocrinol. 15:1624-1635. https://doi.org/10.1210/mend.15.9.0698
  22. Kosugi S, Mori T, Shenker A. 1996. The role of Asp578 in maintaining the inactive conformation of the human lutropin/choriogonadotropin receptor. J. Biol. Chem. 271:31813-31817. https://doi.org/10.1074/jbc.271.50.31813
  23. Kosugi S, Mori T, Shenker A. 1998 . An anionic residue at position 564 is important for maintaining the inactive conformation of the human lutropin/choriogonadotropin receptor. Mol. Pharmacol. 53:894-901.
  24. Kraaij R, Post M, Kremer H, Milgrom E, Epping W, Brunner HG, Grootegoed JA, Themmen AP. 1995. A missense mutation in the second transmembrane segment of the luteinizing hormone receptor causes familial male-limited precocious puberty. J. Clin. Endocrinol. Metab. 80:3168-3172. https://doi.org/10.1210/jcem.80.11.7593421
  25. Krishnamurthy H, Kishi H, Shi M, Galet C, Bhaskaran RS, Hirakawa T, Ascoli M. 2003. Postendocytotic trafficking of the follicle-stimulating hormone (FSH)-FSH receptor complex. Mol. Endocrinol. 17:2162-2176. https://doi.org/10.1210/me.2003-0118
  26. Latronico AC and Segaloff DL. 2007. Insights learned from L457(3.43)R, an activating mutant of the human lutropin receptor. Mol. Cell. Endocrinol. 260-262:287-293. https://doi.org/10.1016/j.mce.2005.11.053
  27. Laue L, Chan WY, Hsueh AJ, Kudo M, Hsu SY, Wu SM, Blomberg L, Cutler GB Jr. 1995. Genetic heterogeneity of constitutively activating mutations of the human luteinizing hormone receptor in familial male-limited precocious puberty. Proc. Natl. Acad. Sci. U. S. A. 92:1906-1910. https://doi.org/10.1073/pnas.92.6.1906
  28. Lazari MF, Bertrand JE, Nakamura K, Liu X, Krupnick JG, Benovic JL, Ascoli M. 1998. Mutation of individual serine residues in the C-terminal tail of the lutropin/choriogonadotropin receptor reveal distinct structural requirements for agonist-induced uncoupling and agonist-induced internalization. J. Biol. Chem. 273:18316-18324. https://doi.org/10.1074/jbc.273.29.18316
  29. Leung MY, Al-Muslim O, Wu SM, Aziz A, Inam S, Awadh M, Rennert OM, Chan WY. 2004. A novel missense homozygous inactivating mutation in the fourth transmembrane helix of the luteinizing hormone receptor in Leydig cell hypoplasia. Am. J. Med. Genet. A 130A:146-153. https://doi.org/10.1002/ajmg.a.20681
  30. Levoye A, Zwier JM, Jaracz-Ros A, Klipfel L, Cottet M, Maurel D, Bdioui S, Balabanian K, Prezeau L, Trinquet E, Durroux T, Bachelerie F. 2015. A broad G protein-coupled receptor internalization assay that combines SNAP-tag labeling, diffusion-enhanced resonance energy transfer, and a highly emissive terbium cryptate. Front. Endocrinol. (Lausanne) 6:167. https://doi.org/10.3389/fendo.2015.00167
  31. Min KS, Liu X, Fabritz J, Jaquette J, Abell AN, Ascoli M. 1998. Mutations that induce constitutive activation and mutations that impair signal transduction modulate the basal and/or agonist-stimulated internalization of the lutropin/choriogonadotropin receptor. J. Biol. Chem. 273:34911-34919. https://doi.org/10.1074/jbc.273.52.34911
  32. Narayan P. 2015. Genetic models for the study of luteinizing hormone receptor function. Front. Endocrinol. (Lausanne) 6:152. https://doi.org/10.3389/fendo.2015.00152
  33. Oldham WM and Hamm HE. 2008. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9:60-71. https://doi.org/10.1038/nrm2299
  34. Richter-Unruh A, Korsch E, Hiort O, Holterhus PM, Themmen AP, Wudy SA. 2005. Novel insertion frameshift mutation of the LH receptor gene: problematic clinical distinction of Leydig cell hypoplasia from enzyme defects primarily affecting testosterone biosynthesis. Eur. J. Endocrinol. 152:255-259. https://doi.org/10.1530/eje.1.01852
  35. Richter-Unruh A, Martens JW, Verhoef-Post M, Wessels HT, Kors WA, Sinnecker GH, Boehmer A, Drop SL, Toledo SP, Brunner HG, Themmen AP. 2002. Leydig cell hypoplasia: cases with new mutations, new polymorphisms and cases without mutations in the luteinizing hormone receptor gene. Clin. Endocrinol. (Oxf.) 56:103-112. https://doi.org/10.1046/j.0300-0664.2001.01437.x
  36. Schoneberg T, Schulz A, Biebermann H, Hermsdorf T, Rompler H, Sangkuhl K. 2004. Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol. Ther. 104:173-206. https://doi.org/10.1016/j.pharmthera.2004.08.008
  37. Sente A, Peer R, Srivastava A, Baidya M, Lesk AM, Balaji S, Shukla AK, Babu MM, Flock T. 2018. Molecular mechanism of modulating arrestin conformation by GPCR phosphorylation. Nat. Struct. Mol. Biol. 25:538-545. https://doi.org/10.1038/s41594-018-0071-3
  38. Shenker A, Laue L, Kosugi S, Merendino JJ Jr, Minegishi T, Cutler GB Jr. 1993. A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature 365:652-654. https://doi.org/10.1038/365652a0
  39. Slosky LM, Bai Y, Toth K, Ray C, Rochelle LK, Badea A, Chandrasekhar R, Pogorelov VM, Abraham DM, Atluri N, Peddibhotla S, Hedrick MP, Hershberger P, Maloney P, Yuan H, Li Z, Wetsel WC, Pinkerton AB, Barak LS, Caron MG. 2020. β-arrestin-biased allosteric modulator of NTSR1 selectively attenuates addictive behaviors. Cell 181:1364-1379.e14. https://doi.org/10.1016/j.cell.2020.04.053
  40. Spiegel AM and Weinstein LS. 2004. Inherited diseases involving G proteins and G protein-coupled receptors. Annu. Rev. Med. 55:27-39. https://doi.org/10.1146/annurev.med.55.091902.103843
  41. Syrovatkina V, Alegre KO, Dey R, Huang XY. 2016. Regulation, signaling, and physiological functions of G-proteins. J. Mol. Biol. 428:3850-3868. https://doi.org/10.1016/j.jmb.2016.08.002
  42. Tao YX. 2006. Inactivating mutations of G protein-coupled receptors and diseases: structure-function insights and therapeutic implications. Pharmacol. Ther. 111:949-973. https://doi.org/10.1016/j.pharmthera.2006.02.008
  43. Tao YX. 2008. Constitutive activation of G protein-coupled receptors and diseases: insights into mechanisms of activation and therapeutics. Pharmacol. Ther. 120:129-148. https://doi.org/10.1016/j.pharmthera.2008.07.005
  44. Tao YX, Johnson NB, Segaloff DL. 2004. Constitutive and agonist-dependent self-association of the cell surface human lutropin receptor. J. Biol. Chem. 279:5904-5914. https://doi.org/10.1074/jbc.M311162200
  45. Themmen AP. 2005. An update of the pathophysiology of human gonadotrophin subunit and receptor gene mutations and polymorphisms. Reproduction 130:263-274. https://doi.org/10.1530/rep.1.00663
  46. Themmen APN and Huhtaniemi IT. 2000. Mutations of gonadotropins and gonadotropin receptors: elucidating the physiology and pathophysiology of pituitary-gonadal function. Endocr. Rev. 21:551-583. https://doi.org/10.1210/er.21.5.551
  47. Yano K, Kohn LD, Saji M, Kataoka N, Okuno A, Cutler GB Jr. 1996. A case of male-limited precocious puberty caused by a point mutation in the second transmembrane domain of the luteinizing hormone choriogonadotropin receptor gene. Biochem. Biophys. Res. Commun. 220:1036-1042. https://doi.org/10.1006/bbrc.1996.0528
  48. Zhang M, Mizrachi D, Fanelli F, Segaloff DL. 2005. The formation of a salt bridge between helices 3 and 6 is responsible for the constitutive activity and lack of hormone responsiveness of the naturally occurring L457R mutation of the human lutropin receptor. J. Biol. Chem. 280:26169-26176. https://doi.org/10.1074/jbc.M502102200
  49. Zhang M, Tao YX, Ryan GL, Feng X, Fanelli F, Segaloff DL. 2007. Intrinsic differences in the response of the human lutropin receptor versus the human follitropin receptor to activating mutations. J. Biol. Chem. 282:25527-25539. https://doi.org/10.1074/jbc.M703500200
  50. Zhou Y, Meng J, Xu C, Liu J. 2021. Multiple GPCR functional assays based on resonance energy transfer sensors. Front. Cell Dev. Biol. 9:611443. https://doi.org/10.3389/fcell.2021.611443