DOI QR코드

DOI QR Code

나노셀룰로스 필러의 구조적 차이 및 함량에 따른 PLA의 결정화 거동 고찰

Effect of Different Morphology of Nucleating Agents on the Crystallization Behavior of Poly Lactic Acid/Nanocellulose Composites

  • 박상현 (건국대학교 공과대학 유기나노시스템공학과) ;
  • 김형섭 (건국대학교 공과대학 유기나노시스템공학과) ;
  • 김태호 (건국대학교 공과대학 유기나노시스템공학과) ;
  • 박세원 (건국대학교 공과대학 유기나노시스템공학과) ;
  • 김민형 (건국대학교 공과대학 유기나노시스템공학과) ;
  • 안정빈 (건국대학교 공과대학 유기나노시스템공학과)
  • Park, Sanghyun (Department of Organic and Nano System Engineering, Konkuk University) ;
  • Kim, Hyungsup (Department of Organic and Nano System Engineering, Konkuk University) ;
  • Kim, Taeho (Department of Organic and Nano System Engineering, Konkuk University) ;
  • Pak, Sewon (Department of Organic and Nano System Engineering, Konkuk University) ;
  • Kim, Minhyung (Department of Organic and Nano System Engineering, Konkuk University) ;
  • Ahn, Jungbin (Department of Organic and Nano System Engineering, Konkuk University)
  • 투고 : 2021.12.04
  • 심사 : 2021.12.17
  • 발행 : 2021.12.31

초록

In this study, two types of nanocellulose were introduced in poly lactic acid (PLA) as nucleation agents, and the crystallization behavior of the composite was studied. Owing to the different aspect ratio, the effect of cellulose nanocrystal (CNC) and cellulose nanofiber (CNF) on the PLA behavior was significantly different. Rheological analysis revealed that CNC did not affect the chain behavior whereas CNF interfered the chain movement of the PLA. Both CNC and CNF played role as nucleation agents, but the crystallization behaviors of the composites were different. DSC analysis confirmed that CNC helped to develop α crystalline of PLA. On the other hand, CNF disturbed the compact crystalline formation and resulted in δ crystalline structure development.

키워드

과제정보

이 논문은 2018년도 정부(과학기술정보통신부)의 재원으로 한국연구재단-미래선도기술개발사업의 지원을 받아 수행된 연구임(No. 2018M3C1B9069748).

참고문헌

  1. R. Dris, H. Imhof, W. Sanchez, J. Gasperi, F. Galgani, B. Tassin, and C. Laforsch, "Beyond the Ocean: Contamination of Freshwater Ecosystems with (micro-)plastic Particles", Environ. Chem., 2015, 12, 539-550. https://doi.org/10.1071/EN14172
  2. W. C. Li, H. F. Tse, and L. Fok, "Plastic Waste in the Marine Environment: A Review of Sources, Occurrence and Effects", Sci. Total. Environ., 2016, 566-567, 333-349. https://doi.org/10.1016/j.scitotenv.2016.05.084
  3. F. Gironi and V. Piemonte, "Bioplastics and Petroleum-based Plastics: Strengths and Weaknesses", Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2011, 33, 1949-1959. https://doi.org/10.1080/15567030903436830
  4. R. L. Reddy, V. S. Reddy, and G. A. Gupta, "Study of Bioplastics as Green and Sustainable Alternative to Plastics", Int. J. Emerg. Technol. Adv. Eng., 2013, 3, 76-81.
  5. C. R. Alvarez-Chavez, S. Edwards, R. Moure-Eraso, and K. Geiser, "Sustainability of Bio-based Plastics: General Comparative Analysis and Recommendations for Improvement", J. Clean. Prod., 2012, 23, 47-56. https://doi.org/10.1016/j.jclepro.2011.10.003
  6. J. Dikgang, A. Leiman, and M. Visser, "Analysis of the Plasticbag Levy in South Africa, Resources, Conservation and Recycling", Resour. Conserv. Recy., 2012, 66, 59-65. https://doi.org/10.1016/j.resconrec.2012.06.009
  7. P. K. Bajpai, I. Singh, and J. Madaan, "Development and Characterization of PLA-based Green Composites: A Review", J. Thermoplast. Compos. Mater., 2014, 27, 52-81. https://doi.org/10.1177/0892705712439571
  8. Q. Chen, J. D. Mangadlao, J. Wallat, A. De Leon, J. K. Pokorski, and R. C. Advincula, "3D Printing Biocompatible Polyurethane/poly(lactic acid)/graphene Oxide Nanocomposites: Anisotropic Properties", ACS Appl. Mater. Interfaces, 2017, 9, 4015-4023. https://doi.org/10.1021/acsami.6b11793
  9. J. Lunt, "Large-scale Production, Properties and Commercial Applications of Polylactic Acid Polymers", Polym. Degrad. Stabil., 1998, 59, 145-152. https://doi.org/10.1016/S0141-3910(97)00148-1
  10. M. P. Arrieta, M. D. Samper, M. Aldas, and J. Lopez, "On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications", Materials, 2017, 10, 1008-1033. https://doi.org/10.3390/ma10091008
  11. C. Zengwen, H. Pan, J. Bian, L. Han, H. Zhang, L. Dong, and Y. Yang, "Transform Poly(lactic acid) Packaging Film from Brittleness to Toughness Using Traditional Industrial Equipments", Polymer, 2019, 180, 121728-121734. https://doi.org/10.1016/j.polymer.2019.121728
  12. M. Razavi and S. Q. Wang, "Why is Crystalline Poly(lactic acid) Brittle at Room Temperature?", Macromolecules, 2019, 52, 5429-5441. https://doi.org/10.1021/acs.macromol.9b00595
  13. Y. Yu, P. Xu, S. Jia, H. Pan, H. Zhang, D. Wang, and L. Dong, "Exploring Polylactide/poly(butylene adipate-co-terephthalate)/rare Earth Complexes Biodegradable Light Conversion Agricultural Films", Int. J. Biol. Macromol., 2019, 127, 210-221. https://doi.org/10.1016/j.ijbiomac.2019.01.044
  14. X. Li, X. Ai, H. Pan, J. Yang, G. Gao, H. Zhang, H. Yang, and L. Dong, "The Morphological, Mechanical, Rheological, and Thermal Properties of PLA/PBAT Blown Films with Chain Extender", Polym. Adv. Technol., 2018, 29, 1706-1717. https://doi.org/10.1002/pat.4274
  15. N. Ning, S. Fu, W. Zhang, F. Chen, K. Wang, H. Deng, Q. Zhang, and Q. Fu, "Realizing the Enhancement of Interfacial Interaction in Semicrystalline Polymer/filler Composites via Interfacial Crystallization", Prog. Polym. Sci., 2021, 37, 1425-1455. https://doi.org/10.1016/j.progpolymsci.2011.12.005
  16. L. Bokobza, M. Rahmani, C. Belin, J. L. Bruneel, and N. E. El Bounia, "Blends of Carbon Blacks and Multiwall Carbon Nanotubes as Reinforcing Fillers for Hydrocarbon Rubbers", J. Polym. Sci. Part B: Polym. Phys., 2008, 46, 1939-1951. https://doi.org/10.1002/polb.21529
  17. G. Mittal, V. Dhand, K. Y. Rhee, S.-J. Park, and W. R. Lee, "A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites", J. Ind. Eng. Chem., 2015, 21, 11-25. https://doi.org/10.1016/j.jiec.2014.03.022
  18. Y. Liu, Y. Zhao, B. Sun, and C. Chen, "Understanding the Toxicity of Carbon Nanotubes", Acc. Chem. Res., 2013, 46, 702-713. https://doi.org/10.1021/ar300028m
  19. Y. Habibi, L. A. Lucia, and O. J. Rojas, "Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications", Chem. Rev., 2010, 110, 3479-3500. https://doi.org/10.1021/cr900339w
  20. Q. Wang, C. Ji, J. Sun, Q. Zhu, and J. Liu, "Structure and Properties of Polylactic Acid Biocomposite Films Reinforced with Cellulose Nanofibrils", Molecules, 2020, 25, 3306. https://doi.org/10.3390/molecules25143306
  21. M. N. F. Norrahim, N. A. M. Kasim, V. F. Knight, N. A. Halim, N. A. A. Shah, S. A. M. Noor, S. H. Jamal, K. K. Ong, W. M. Z. W. Yunus, M. A. A. Farid, M. A. Jenol, and I. R. Ahmad, "Performance Evaluation of Cellulose Nanofiber Reinforced Polymer Composites", Funct. Compos. Struct., 2021, 149, 543-547.
  22. T. Kim, E. Ko, J. Ahn, S. Park, S. Pak, M. Kim, and H. Kim, "Rheological Behavior of Polylactic Acid Solution and Physical Properties of Resulting Film Using Cellulose Nanocrystals", Text. Sci. Eng., 2020, 57, 1-7. https://doi.org/10.12772/TSE.2020.57.001
  23. Y. Shimizu, K. Sakakibara, S. Akimoto, and Y. Tsujii, "Effective Reinforcement of Poly(methyl methacrylate) Composites with a Well-Defined Bactrial Cellulose Nanofiber Network", ACS Sustain. Chem. Eng., 2019, 7, 13351-13358. https://doi.org/10.1021/acssuschemeng.9b02602
  24. Y. Liu, H. H. Winter, and S. L. Perry, "Linear Viscoelasticity of Complex Coacervates", Adv. Colloid. Interface. Sci., 2017, 239, 46-60. https://doi.org/10.1016/j.cis.2016.08.010
  25. R. Salehiyan and K. Kim, "Effect of Organoclay on Non-linear Rheological Properties of Poly(lactic acid)/poly(caprolactone) Blends", Korean J. Chem. Eng., 2013, 30, 1013-1022. https://doi.org/10.1007/s11814-013-0035-6
  26. V. S. G. Silverajah, N. A. Ibrahim, W. M. Z. W. Yunus, H. A. Hassan, and C. B. Woei, "A Comparative Study on the Mechanical, Thermal and Morphological Characterization of Poly(lactic acid)/epoxidized Palm Oil Blend", Int. J. Mol. Sci., 2012, 13, 5878-5898. https://doi.org/10.3390/ijms13055878
  27. M. E. K. Sofla, R. J. Brown, T. Tsuzuki, and T. J. Rainey, "A Comparison of Cellulose Nanocrystals and Cellulose Nanofibers Extracted from Bagasse Using Acid and Ball Milling Methods", Adv. Nat. Sci: Nanotechnol., 2016, 7, 1-9.
  28. Y. T. Hsieh, S. Nozaki, M. Kido, K. Kamitani, K. Kojio, and A. Takahara, "Crystal Polymorphism of Polylactide and Its Composites by X-ray Diffraction Study", Polym. J., 2020, 52, 755-763. https://doi.org/10.1038/s41428-020-0343-8
  29. F. Akti, "Catalytic Degradation of Polylactic Acid over Al2O3@SiO2 Core-Shell Catalysts", J. Polym. Environ., 2021, 29, 2236-2247. https://doi.org/10.1007/s10924-020-02041-x
  30. K. Kanomata, N. Tatebayashi, X. Habaki, and T. Kitaoka, "Cooperative Catalysis of Cellulose Nanofiber and Organocatalyst in Direct Aldo Reactions", Sci. Rep., 2018, 8, 4098-4103. https://doi.org/10.1038/s41598-018-22350-5