Browse > Article
http://dx.doi.org/10.12772/TSE.2021.58.322

Effect of Different Morphology of Nucleating Agents on the Crystallization Behavior of Poly Lactic Acid/Nanocellulose Composites  

Park, Sanghyun (Department of Organic and Nano System Engineering, Konkuk University)
Kim, Hyungsup (Department of Organic and Nano System Engineering, Konkuk University)
Kim, Taeho (Department of Organic and Nano System Engineering, Konkuk University)
Pak, Sewon (Department of Organic and Nano System Engineering, Konkuk University)
Kim, Minhyung (Department of Organic and Nano System Engineering, Konkuk University)
Ahn, Jungbin (Department of Organic and Nano System Engineering, Konkuk University)
Publication Information
Textile Science and Engineering / v.58, no.6, 2021 , pp. 322-327 More about this Journal
Abstract
In this study, two types of nanocellulose were introduced in poly lactic acid (PLA) as nucleation agents, and the crystallization behavior of the composite was studied. Owing to the different aspect ratio, the effect of cellulose nanocrystal (CNC) and cellulose nanofiber (CNF) on the PLA behavior was significantly different. Rheological analysis revealed that CNC did not affect the chain behavior whereas CNF interfered the chain movement of the PLA. Both CNC and CNF played role as nucleation agents, but the crystallization behaviors of the composites were different. DSC analysis confirmed that CNC helped to develop α crystalline of PLA. On the other hand, CNF disturbed the compact crystalline formation and resulted in δ crystalline structure development.
Keywords
PLA; CNC; CNF; crystallization behavior; nucleation agent;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Salehiyan and K. Kim, "Effect of Organoclay on Non-linear Rheological Properties of Poly(lactic acid)/poly(caprolactone) Blends", Korean J. Chem. Eng., 2013, 30, 1013-1022.   DOI
2 Y. T. Hsieh, S. Nozaki, M. Kido, K. Kamitani, K. Kojio, and A. Takahara, "Crystal Polymorphism of Polylactide and Its Composites by X-ray Diffraction Study", Polym. J., 2020, 52, 755-763.   DOI
3 Q. Wang, C. Ji, J. Sun, Q. Zhu, and J. Liu, "Structure and Properties of Polylactic Acid Biocomposite Films Reinforced with Cellulose Nanofibrils", Molecules, 2020, 25, 3306.   DOI
4 C. Zengwen, H. Pan, J. Bian, L. Han, H. Zhang, L. Dong, and Y. Yang, "Transform Poly(lactic acid) Packaging Film from Brittleness to Toughness Using Traditional Industrial Equipments", Polymer, 2019, 180, 121728-121734.   DOI
5 J. Dikgang, A. Leiman, and M. Visser, "Analysis of the Plasticbag Levy in South Africa, Resources, Conservation and Recycling", Resour. Conserv. Recy., 2012, 66, 59-65.   DOI
6 J. Lunt, "Large-scale Production, Properties and Commercial Applications of Polylactic Acid Polymers", Polym. Degrad. Stabil., 1998, 59, 145-152.   DOI
7 L. Bokobza, M. Rahmani, C. Belin, J. L. Bruneel, and N. E. El Bounia, "Blends of Carbon Blacks and Multiwall Carbon Nanotubes as Reinforcing Fillers for Hydrocarbon Rubbers", J. Polym. Sci. Part B: Polym. Phys., 2008, 46, 1939-1951.   DOI
8 R. Dris, H. Imhof, W. Sanchez, J. Gasperi, F. Galgani, B. Tassin, and C. Laforsch, "Beyond the Ocean: Contamination of Freshwater Ecosystems with (micro-)plastic Particles", Environ. Chem., 2015, 12, 539-550.   DOI
9 R. L. Reddy, V. S. Reddy, and G. A. Gupta, "Study of Bioplastics as Green and Sustainable Alternative to Plastics", Int. J. Emerg. Technol. Adv. Eng., 2013, 3, 76-81.
10 P. K. Bajpai, I. Singh, and J. Madaan, "Development and Characterization of PLA-based Green Composites: A Review", J. Thermoplast. Compos. Mater., 2014, 27, 52-81.   DOI
11 X. Li, X. Ai, H. Pan, J. Yang, G. Gao, H. Zhang, H. Yang, and L. Dong, "The Morphological, Mechanical, Rheological, and Thermal Properties of PLA/PBAT Blown Films with Chain Extender", Polym. Adv. Technol., 2018, 29, 1706-1717.   DOI
12 F. Gironi and V. Piemonte, "Bioplastics and Petroleum-based Plastics: Strengths and Weaknesses", Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2011, 33, 1949-1959.   DOI
13 W. C. Li, H. F. Tse, and L. Fok, "Plastic Waste in the Marine Environment: A Review of Sources, Occurrence and Effects", Sci. Total. Environ., 2016, 566-567, 333-349.   DOI
14 M. Razavi and S. Q. Wang, "Why is Crystalline Poly(lactic acid) Brittle at Room Temperature?", Macromolecules, 2019, 52, 5429-5441.   DOI
15 Y. Liu, Y. Zhao, B. Sun, and C. Chen, "Understanding the Toxicity of Carbon Nanotubes", Acc. Chem. Res., 2013, 46, 702-713.   DOI
16 Q. Chen, J. D. Mangadlao, J. Wallat, A. De Leon, J. K. Pokorski, and R. C. Advincula, "3D Printing Biocompatible Polyurethane/poly(lactic acid)/graphene Oxide Nanocomposites: Anisotropic Properties", ACS Appl. Mater. Interfaces, 2017, 9, 4015-4023.   DOI
17 M. P. Arrieta, M. D. Samper, M. Aldas, and J. Lopez, "On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications", Materials, 2017, 10, 1008-1033.   DOI
18 Y. Yu, P. Xu, S. Jia, H. Pan, H. Zhang, D. Wang, and L. Dong, "Exploring Polylactide/poly(butylene adipate-co-terephthalate)/rare Earth Complexes Biodegradable Light Conversion Agricultural Films", Int. J. Biol. Macromol., 2019, 127, 210-221.   DOI
19 N. Ning, S. Fu, W. Zhang, F. Chen, K. Wang, H. Deng, Q. Zhang, and Q. Fu, "Realizing the Enhancement of Interfacial Interaction in Semicrystalline Polymer/filler Composites via Interfacial Crystallization", Prog. Polym. Sci., 2021, 37, 1425-1455.   DOI
20 G. Mittal, V. Dhand, K. Y. Rhee, S.-J. Park, and W. R. Lee, "A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites", J. Ind. Eng. Chem., 2015, 21, 11-25.   DOI
21 Y. Habibi, L. A. Lucia, and O. J. Rojas, "Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications", Chem. Rev., 2010, 110, 3479-3500.   DOI
22 M. N. F. Norrahim, N. A. M. Kasim, V. F. Knight, N. A. Halim, N. A. A. Shah, S. A. M. Noor, S. H. Jamal, K. K. Ong, W. M. Z. W. Yunus, M. A. A. Farid, M. A. Jenol, and I. R. Ahmad, "Performance Evaluation of Cellulose Nanofiber Reinforced Polymer Composites", Funct. Compos. Struct., 2021, 149, 543-547.
23 Y. Shimizu, K. Sakakibara, S. Akimoto, and Y. Tsujii, "Effective Reinforcement of Poly(methyl methacrylate) Composites with a Well-Defined Bactrial Cellulose Nanofiber Network", ACS Sustain. Chem. Eng., 2019, 7, 13351-13358.   DOI
24 Y. Liu, H. H. Winter, and S. L. Perry, "Linear Viscoelasticity of Complex Coacervates", Adv. Colloid. Interface. Sci., 2017, 239, 46-60.   DOI
25 V. S. G. Silverajah, N. A. Ibrahim, W. M. Z. W. Yunus, H. A. Hassan, and C. B. Woei, "A Comparative Study on the Mechanical, Thermal and Morphological Characterization of Poly(lactic acid)/epoxidized Palm Oil Blend", Int. J. Mol. Sci., 2012, 13, 5878-5898.   DOI
26 K. Kanomata, N. Tatebayashi, X. Habaki, and T. Kitaoka, "Cooperative Catalysis of Cellulose Nanofiber and Organocatalyst in Direct Aldo Reactions", Sci. Rep., 2018, 8, 4098-4103.   DOI
27 F. Akti, "Catalytic Degradation of Polylactic Acid over Al2O3@SiO2 Core-Shell Catalysts", J. Polym. Environ., 2021, 29, 2236-2247.   DOI
28 T. Kim, E. Ko, J. Ahn, S. Park, S. Pak, M. Kim, and H. Kim, "Rheological Behavior of Polylactic Acid Solution and Physical Properties of Resulting Film Using Cellulose Nanocrystals", Text. Sci. Eng., 2020, 57, 1-7.   DOI
29 C. R. Alvarez-Chavez, S. Edwards, R. Moure-Eraso, and K. Geiser, "Sustainability of Bio-based Plastics: General Comparative Analysis and Recommendations for Improvement", J. Clean. Prod., 2012, 23, 47-56.   DOI
30 M. E. K. Sofla, R. J. Brown, T. Tsuzuki, and T. J. Rainey, "A Comparison of Cellulose Nanocrystals and Cellulose Nanofibers Extracted from Bagasse Using Acid and Ball Milling Methods", Adv. Nat. Sci: Nanotechnol., 2016, 7, 1-9.