DOI QR코드

DOI QR Code

PVP 열분해를 통해 질소가 도핑된 흑연의 전기화학적 특성

Electrochemical Properties of Nitrogen-doped Graphite via Pyrolysis of PVP

  • 김진수 (전북대학교 유기소재섬유공학과) ;
  • 서해천 (전북대학교 유기소재섬유공학과) ;
  • 전세진 (전북대학교 유기소재섬유공학과) ;
  • 선민영 (전북대학교 기계설계공학부) ;
  • 김현철 (청운대학교 뷰티산업학과) ;
  • 길명섭 (전북대학교 유기소재섬유공학과)
  • Kim, Jin Soo (Department of Organic Materials and Fiber Engineering, Jeonbuk National University) ;
  • Seo, Hae Cheon (Department of Organic Materials and Fiber Engineering, Jeonbuk National University) ;
  • Jeon, Se Jin (Department of Organic Materials and Fiber Engineering, Jeonbuk National University) ;
  • Sun, Min Young (Division of Mechanical Design Engineering, Jeonbuk National University) ;
  • Kim, Hyun-Chel (Department of Beauty Industry, Chungwoon University) ;
  • Khil, Myung-Seob (Department of Organic Materials and Fiber Engineering, Jeonbuk National University)
  • 투고 : 2021.07.19
  • 심사 : 2021.12.15
  • 발행 : 2021.12.31

초록

Despite considerable efforts to develop alternatives to graphite, it remains the dominant anode material in commercially available energy storage systems, such as lithium-ion batteries and supercapacitors, owing to its low electrical resistivity, thermal expansion, and low cost. In this work, nitrogen-doped graphite was prepared via polyvinylpyrrolidone pyrolysis to enhance the performance of graphite-based electrodes. The asprepared N-doped graphite was investigated in detail by field-emission scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge. The results show that N-doped graphite (N content of 2.52 wt%) synthesized at 700 ℃ exhibits a high specific capacitance of 32.85 F g-1 at 1 A g-1, which is approximately three times greater than that of pristine graphite.

키워드

과제정보

이 논문은 2021년 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2021R1F1A1047673).

참고문헌

  1. A. Gonzalez, E. Goikolea, J. A. Barrena, and R. Mysyk, "Review on Supercapacitors: Technologies and Materials", Renewable and Sustainable Energy Reviews, 2016, 58, 1189-1206. https://doi.org/10.1016/j.rser.2015.12.249
  2. Y. Wang, Y. Song, and Y. Xia, "Electrochemical Capacitors: Mechanism, Materials, Systems, Characterization and Applications", Chem. Soc. Rev., 2016, 45, 5925-5950. https://doi.org/10.1039/c5cs00580a
  3. G. Wang, L. Zhang, and J. Zhang, "A Review of Electrode Materials for Electrochemical Supercapacitors", Chem. Soc. Rev., 2012, 41, 797-828. https://doi.org/10.1039/C1CS15060J
  4. Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, "Progress of Electrochemical Capacitor Electrode Materials: A Review", Int. J. Hydrogen Energy, 2009, 34, 4889-4899. https://doi.org/10.1016/j.ijhydene.2009.04.005
  5. Y. Li, L. Liu, Y. Wu, T. Wu, H. Wu, Q. Cai, Y. Xu, B. Zeng, C. Yuan, and L. Dai, "Facile Synthesis of Nitrogen-doped Carbon Materials with Hierarchical Porous Structures for High-performance Supercapacitors in Both Acidic and Alkaline Electrolytes", J. Mater. Chem. A, 2019, 7, 13154-13163. https://doi.org/10.1039/c9ta00890j
  6. J. Lia, S. Ye, T. Li, X. Li, X. Yang, and S. Ding, "Preparation of Graphene Nanoribbons (GNRs) as an Electronic Component with the Multi-walled Carbon Nanotubes (MWCNTs)", Procedia Engineering, 2015, 102, 492-498. https://doi.org/10.1016/j.proeng.2015.01.197
  7. J. Yang, X. Duan, W. Guo, D. Li, H. Zhang, and W. Zheng, "Electrochemical Performances Investigation of NiS/rGO Composite as Electrode Material for Supercapacitors", Nano Energy, 2014, 5, 74-81. https://doi.org/10.1016/j.nanoen.2014.02.006
  8. D. D. L. Chung, "Review Graphite", J. Mater. Sci., 2002, 37, 1475-1489. https://doi.org/10.1023/A:1014915307738
  9. C. de las Casas and W. Li, "A Review of Application of Carbon Nanotubes for Lithium Ion Battery Anode Material", J. Power Sources, 2012, 208, 74-85. https://doi.org/10.1016/j.jpowsour.2012.02.013
  10. M. M. Hantel, T. Kaspar, R. Nesper, A. Wokaun, and R. Kotz, "Partially Reduced Graphite Oxide for Supercapacitor Electrodes: Effect of Graphene Layer Spacing and Huge Specific Capacitance", Electrochemistry Communications, 2011, 13, 90-92. https://doi.org/10.1016/j.elecom.2010.11.021
  11. C. Liu, X. Liu, J. Tan, Q. F. Wang, H. Wen, and C. H. Zhang, "Nitrogen-doped Graphene by All-solid-state Ball-milling Graphite with Urea as a High-power Lithium Ion Battery Anode", J. Power Sources, 2017, 342, 157-164. https://doi.org/10.1016/j.jpowsour.2016.11.110
  12. H. Q. Li, Y. G. Wang, C. X. Wang, and Y. Y. Xia, "A Competitive Candidate Material for Aqueous Supercapacitors: High Surface-area Graphite", J. Power Sources, 2008, 185, 1557-1562. https://doi.org/10.1016/j.jpowsour.2008.08.079
  13. M. Kang, D. H. Lee, J. Yang, Y.-M. Kang, and H. Jung, "Simultaneous Reduction and Nitrogen Doping of Graphite Oxide by Using Electron Beam Irradiation", RSC Adv., 2015, 5, 104502-104508. https://doi.org/10.1039/C5RA20199C
  14. E. J. Ra, M. H. Tran, S. H. Yang, T. H. Kim, C. S. Yang, Y. J. Chung, Y. K. Lee, I. J. Kim, and H. K. Jeong, "Synthesis of Nitrogen Doped Graphite Oxide and Its Electrochemical Properties", Current Appl. Phys., 2014, 14, 82-86. https://doi.org/10.1016/j.cap.2013.10.002
  15. S. Dai, Z. Liu, B. Zhao, J. Zeng, H. Hu, Q. Zhang, D. Chen, C. Qu, D. Dang, and M. Liu, "A High-performance Supercapacitor Electrode Based on N-doped Porous Graphene", J. Power Sources, 2018, 387, 43-48. https://doi.org/10.1016/j.jpowsour.2018.03.055
  16. W. Zhang, Z. Chen, X. Guo, K. Jin, Y. Wang, L. Li, Y. Zhang, Z. Wang, L. Sun, and T. Zhang, "N/S Co-doped Three-dimensional Graphene Hydrogel for High Performance Supercapacitor", Electrochimica Acta, 2018, 278, 51-60. https://doi.org/10.1016/j.electacta.2018.05.018
  17. T. Horikawa, N. Sakao, T. Sekida, J. Hayashi, D. D. Do, and M. Katoh, "Preparation of Nitrogen-doped Porous Carbon by Ammonia Gas Treatment and the Effects of N-doping on Water Adsorption", Carbon, 2012, 50, 1833-1842. https://doi.org/10.1016/j.carbon.2011.12.033
  18. Z. H. Sheng, L. Shao, J. J. Chen, W. J. Bao, F. B. Wang, and X. H. Xia, "Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis", ACS Nano, 2011, 5, 4350-4358. https://doi.org/10.1021/nn103584t
  19. Y. Hu, H. Liu, Q. Ke, and J. Wang, "Effects of Nitrogen Doping on Supercapacitor Performance of a Mesoporous Carbon Electrode Produced by a Hydrothermal Soft-templating Process", J. Mater. Chem. A, 2014, 2, 11753-11758. https://doi.org/10.1039/C4TA01269K
  20. J. M. Yun, S. H. Park, Y. H. Hwang, E. S. Lee, U. Maiti, H. N. Moon, B. H. Kim, B. S. Bae, Y. H. Kim, and S. O. Kim, "Complementary p- and n-type Polymer Doping for Ambient Stable Graphene Inverter", ACS Nano, 2014, 8, 650-656. https://doi.org/10.1021/nn4053099
  21. D. S. Jeong, J. M. Yun, and K. H. Kim, "Highly Porous Nitrogen-doped Carbon for Superior Electric Double-layer Capacitors", RSC Adv., 2017, 7, 44735-44742. https://doi.org/10.1039/C7RA09272E
  22. J. G. Kim, H. C. Kim, N. D. Kim, and M. S. Khil, "N-doped Hierarchical Porous Hollow Carbon Nanofibers Based on PAN/PVP@SAN Structure for High Performance Supercapacitor", Compos. Part B: Eng., 2020, 186, 107825. https://doi.org/10.1016/j.compositesb.2020.107825
  23. M. Velicky, P. S. Toth, C. R. Woods, K. S. Novoselov, and R. A. W. Dryfe, "Electrochemistry of the Basal Plane versus Edge Plane of Graphite Revisited", J. Phys. Chem. C, 2019, 123, 11677-11685. https://doi.org/10.1021/acs.jpcc.9b01010
  24. C. Bie, H. Yu, B. Cheng, W. Ho, J. Fan, and J. Yu, "Design, Fabrication, and Mechanism of Nitrogen-doped Graphene-based Photocatalyst", Adv. Mater., 2021, 33, 2003521. https://doi.org/10.1002/adma.202003521
  25. A. Amiri, B. Conlee, I. Tallerine, W. J. Kennedy, and M. Naraghi, "A Novel Path Towards Synthesis of Nitrogen-rich Porous Carbon Nanofibers for High Performance Supercapactiors", Chem. Eng. J., 2020, 399, 125788. https://doi.org/10.1016/j.cej.2020.125788
  26. D. Usachov, O. Vilkov, A. Gruneis, D. Haberer, A. Fedorov, V. K. Adamchuk, A. B. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, C. Laubschat, and D. V. Vyalikh, "Nitrogen-doped Graphene: Efficient Growth, Structure, and Electronic Properties", Nano Lett., 2011, 11, 5401-5407. https://doi.org/10.1021/nl2031037
  27. X. Li, X. Chen, Y. Zhao, Y. Deng, J. Zhu, S. Jiang, and R. Wang, "Flexible All-solid-state Supercapacitors Based on an Intergrated Electrode of Hollow N-doped Carbon Nanofibers Embedded with Graphene Nanosheets", Electrochimica Acta, 2020, 332, 135398. https://doi.org/10.1016/j.electacta.2019.135398
  28. Z. Zafar, Z. H. Ni, X. Wu, Z. X. Shi, H. Y. Nan, J. Bai, and L. T. Sun, "Evolution of Raman Spectra in Nitrogen Doped Graphene", Carbon, 2013, 61, 57-62. https://doi.org/10.1016/j.carbon.2013.04.065
  29. Y. F. Lu, S. T. Lo, J. C. Lin, W. Zhang, J. Y. Lu, F. H. Liu, C. M. Tseng, Y. H. Lee, C. T. Liang, and L. J. Li, "Nitrogen-doped Graphene Sheets Grown by Chemical Vapor Deposition: Synthesis and Influence of Nitrogen Impurities on Carrier Transport", ACS Nano, 2013, 7, 6522-6532. https://doi.org/10.1021/nn402102y
  30. D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W. X. Li, Q. Fu, X. Ma, Q. Xue, G. Sun, and X. Bao, "Toward N-doped Graphene via Solvothermal Synthesis", Chem. Mater., 2011, 23, 1188-1193. https://doi.org/10.1021/cm102666r