• Title/Summary/Keyword: nitrogen species

Search Result 1,080, Processing Time 0.023 seconds

Radiochemical behavior of nitrogen species in high temperature water

  • Young-Jin Kim;Geun Dong Song;Seung Heon Baek;Beom Kyu Kim;Jin Sik Cheon;Jun Hwan Kim;Hee-Sang Shim;Soon-Hyeok Jeon;Hyunmyung Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3183-3193
    • /
    • 2023
  • The water radiolysis in-core at light water reactors (LWRs) produces various radicals with other ionic species/molecules and radioactive nitrogen species in the reactor coolant. Nitrogen species can exist in many different chemical forms and recirculate in water and steam, and consequently contribute to what extent the environmental safety at nuclear power plants. Therefore, a clear understanding of formation kinetics and chemical behaviors of nitrogen species under irradiation is crucial for better insight into the characteristics of major radioactive species released to the main steam or relevant coolant systems and eventually development of advanced processes/methodologies to enhance the environmental safety at nuclear power plants. This paper thus focuses on basic principles on electrochemical interaction kinetics of radiolytic molecules and various nitrogen species in high temperature water, fundamental approaches for calculating thermodynamic values to predict their stability and domain in LWRs, and the effect of nitrogen species on crevice chemistry/corrosion and intergranular stress corrosion cracking (IGSCC) susceptibility of structure materials in high temperature water.

Relationship between Vegetation Composition and Dissolved Nitrogen in Wetlands of Higashi-Hiroshima, West Japan

  • Miandoab, Azam Haidary;Nakane, Kaneyuki
    • Journal of Ecology and Environment
    • /
    • v.30 no.3
    • /
    • pp.209-223
    • /
    • 2007
  • Twenty-four wetlands located in Higashi-Hiroshima City in West Japan were selected for this study in order to investigate both the relationship between aquatic plant composition and environmental conditions; and the relationship between changing land use patterns in the catchments and the concentration of different forms of nitrogen in the wetlands. The dominant and subdominant species which comprised the principal vegetation were determined based on a vegetation census conducted in each wetland during the growing season from June to August, 2006. The seasonal variations of water quality factors (pH, electrical conductivity, turbidity, dissolved oxygen, total dissolved solid, and temperature) and different forms of nitrogen such as nitrite, nitrate, ammonium, total nitrogen, dissolved organic nitrogen and dissolved inorganic nitrogen concentrations were analyzed as important indicators of water quality for the surface water of the wetlands. The surveyed wetlands were classified into three types (non-disturbed wetlands, moderately-disturbed wetlands and highly-disturbed wetlands), based on the degree of human disturbance to their catchment areas. An analysis of variance indicated that there was a significant difference among the wetland groups in the annual mean values of electrical conductivity, total dissolved solids, total nitrogen, nitrite, dissolved inorganic nitrogen and dissolved organic nitrogen. Classification of the wetlands into three groups has revealed a pattern of changes in the composition of plant species in the wetlands and a pattern of changes in nitrogen concentrations. A majority of the non-disturbed wetlands were characterized by Brasenia schrebi and Trapa bispinosa as dominant; with Potamogeton fryeri and Iris pesudacorus as sub-dominant species. For most of the moderately-disturbed wetlands, Brasenia schrebi were shown to be a dominant species; Elocheriss kuriguwai and Phragmites australis were observed as sub-dominant species. For a majority of the highly-disturbed wetlands, Typha latifolia and T. angustifolia were observed as dominant species, and Nymphea tetragona as the sub-dominant species in the study area. An analysis of land use and water quality factors indicated that forest area played a considerable role in reducing the concentration of nutrients, and can act as a sink for surface/subsurface nutrient inputs flowing into wetland water, anchor the soil, and lower erosion rates into wetlands.

EFFECTS OF THE HERBICIDE, BUTACHLOR, ON NITROGEN FIXATION IN PHOTOTROPHIC NONSULFUR BACTERIA

  • Lee, Kyung-Mi;Kim, Jai-Soo;Lee, Hyun-Soon
    • Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.136-147
    • /
    • 2007
  • In an effort to identify possible microbes for seeking bioagents for remediation of herbicide-contaminated soils, seven species of phototrophic nonsulfur bacteria (Rhodobacter capsulatus and sphaeroides, Rhodospirillum rubrum, Rhodopseudomonas acidophila, blastica and viridis, Rhodomicrobium vannielii) were grown in the presence of the herbicide, butachlor, and bacterial growth rates and nitrogen fixation were measured with different carbon sources. Under general conditions, all species showed 17-53% reductions in growth rate following butachlor treatment. Under nitrogen-fixing conditions, Rb. capsulatus and Rs. rubrum showed 1-4% increases in the growth rates and 2-10% increases in nitrogen-fixing abilities, while the other 5 species showed decreases of 17-47% and 17-85%, respectively. The finding that Rp. acidophila, Rp. blastica, Rp. viridis and Rm. vannielii showed stronger inhibitions of nitrogenase activity seems to indicate that species in genera Rhodobacter and Rhodospirillum are less influenced by butachlor than those in Rhodopseudomonas and Rhodomicrobium in terms of nitrogen-fixing ability. Overall, nitrogenase activity was closely correlated with both growth rate and glutamine synthetase activity (representing nitrogen metabolism). When the carbon sources were compared, pyruvate (three carbons) was best for all species in terms of growth rate and nitrogen fixation, with malate (four carbons) showing intermediate values and ribose(five carbons) showing the lowest; these trends did not change in response to butachlor treatment. We verified that each of the 7 species had a plasmid ($12.2{\sim}23.5\;Kb$). We found that all 7 species could use butachlor as a sole carbon source and 3 species were controlled by plasmid-born genes, but it is doubtful whether plasmid-born genes were responsible to nitrogen fixation.

Response of Old-field Plant Community to an Experimental Nitrogen Gradient (질소 시비 구배에 따른 묵밭의 식물 군집 반응)

  • Lee, Kyu-Song;Joon-Ho Kim
    • The Korean Journal of Ecology
    • /
    • v.19 no.4
    • /
    • pp.341-351
    • /
    • 1996
  • In order to elucidate the differences in early successional development among similary aged old-fields having different soil nitrogen (N), caused by the land use history before at abandonment, the response of plant community along an experimental nitrogen gradient (control plot (No), plot NI with 5.8g $N/m^2$, plot N2 with 11.7g $N/m^2$ and plot N3 with 23.3g $N/m^2$) was investigated in a five-year-old abandoned field. Although the N content in soil among treatments was similar at the end of the growing season, N concentrations in plant tissue increased with the amount of N supplied. These results suggest that almost all the N contained in N-enriched soil might be absorbed by plants during the growing season after N supply. Vegetation tended to grow vigorously by nitrogen supply, and the standing biomass increased significantly in plots NI and N2 . Species richness of plants, especially of annuals and perennials, was more reduced than the control plot, and the species diversity was also reduced by N supply. The importance value (IV) of species by N supply differed in each species along the position on the successional sere: Artemisia princeps var. orientalis as the dominant species in this old-field decreased slightly; annuals as the earlier successional species decreased clearly along nitrogen gardients; Erigeron annuals as the earlier successional species and as a strong competitor with Artemisia princeps var. orientalis had the highest IV by small N supply; Miscanthus sinensis and Rubus crataegifolius as the later successional species increased by large N supply. These results suggest that old-fields with high soil N might show the structural and functional characteristics of the earlier successional stages, but community composition in those old-fields might be changed more quickly from the sarlier successional species than the later successional species.

  • PDF

The Effect of Activated Nitrogen Species for Diffusion Rate during a Plasma Nitriding Process (플라즈마질화에서 발생기 질소와 질화 속도에 관한 연구)

  • Kim, Sang-Gweon;Kim, Sung-Wan;Brand, P.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.3
    • /
    • pp.150-155
    • /
    • 2010
  • Generally, plasma nitriding process has composed with a nitriding layer within glow discharge region occurred by energy exchange. The dissociations of nitrogen molecules are very difficult to make neutral atoms or ionic nitrogen species via glow discharge area. However, the captured electrons in which a double-folded screen with same potential cathode can stimulate and come out some single atoms or activated ionic species. It was showed an important thing that is called "hat is a dominant component in this nitriding process?" in plasma nitriding process and it can take an effective species for without compound layer. During a plasma nitriding process, it was able to estimate with analyzing and identification by optical emission spectroscopy (OES) study. And then we can make comparative studies on the nitrogen transfer with plasma nitriding and ATONA process using plasma diagnosis and metallurgical observation. From these observations, we can understand role of active species of nitrogen, like N, $N^+$, ${N_2}^+$, ${N_2}^*$ and $NH_x$-radical, in bulk plasma of each process. And the same time, during DC plasma nitriding and other processes, the species of FeN atom or any ionic nitride species were not detected by OES analyzing.

The effect of dry matter allocation at the early seedling stare on the growth of two grass species (두 초본 종의 생장에 있어서 실생 초기의 물질분해 효과)

  • Park, Young-Mok
    • The Korean Journal of Ecology
    • /
    • v.15 no.3
    • /
    • pp.297-309
    • /
    • 1992
  • The growth of digitaria adscendens and eleusine indica, annual weeds common in japan, was experimentally analyzed under varying untrient conditions. compared with e. indica, d. adscendensshowed a higher the two under high nitrogen availability. Higher net assimilation rate(nar) in d. adscendens than e. india was responsible for high RGR in D. adscendens under the low nitrogen availability. The different of NAR in the two species was induced not by leaf nitrogen content but by nitrogen use efficiency. Under unfertilized conditions nitrogen uptake rate(nur) was greater in d. adscendens than e. indica. Specific absorption rate in two species was similar, but root mass was greater in d. adscendens than e. indica.d. adscendens allocated more dry matter to roots than e. india earlier stage of seedlings. The contributed to higher rot mass and in turn resulted in higher nur in d. adscendens than that in e. india. It is concluuded that the larger allocation of dry matter to roots at early seedling stage in d. adscendens plays an important role in obtaining nitrogen for the continuation of growth under low nitrogen availability.

  • PDF

Differences of Nitrogen Mineralization in Larix decidua, Pinus strobus and Thuja occidentalis Plantations of the Kwangeneung Experimental Forest, Kyonggi Province (경기도 광릉시험림의 구주낙엽송, 스트로브잣나무, 서양측백 조림지 토양내 질소 무기화 비교)

  • Son, Yowhan;Im-Kyun Lee;Jung-Tae Kim;Sang-Eun Lee
    • The Korean Journal of Ecology
    • /
    • v.18 no.3
    • /
    • pp.385-395
    • /
    • 1995
  • Species effects on soil nitrogen mineralization and nitrification in the top 15 cm of soil were evaluated using the buried-bag incubation method in three coniferous plantations in the Kwangneung Experimental Forest, Kyonggi Province. The plantations were established on a similar soil in 1927, and included Larix decidua, Pinus strobus, and Thuja occidentalis. Ten soil samples within each plantation were taken during an entire growing season (May 2~Oct. 30, 1994). Mean daily nitrogen mineralization rates during 45-day in situ soil incubations were significantly different among species and incubation dates. Growing season nitrogen mineralization also differed significantly among species and ranged from 47.7 mg N/kg soil for Larix decidua to 21.5 ma N/kg soil for Thuja occidentalis. Growing season nitrification differed significantly among species and comprised from 93% to 100% of the total growing season nitrogen mineralized. We speculated that organic matter contents and quality might control nitrogen mineralization and nitrification in these soils.

  • PDF

Species Alterations Caused by Nitrogen and Carbon Addition in Nutrient-deficient Municipal Waste Landfills

  • Kim, Kee-Dae
    • Journal of Ecology and Environment
    • /
    • v.30 no.2
    • /
    • pp.161-170
    • /
    • 2007
  • The ultimate target of restoring waste landfills is revegetation. The most effective method for increasing species richness and biomass in nutrient limited waste landfills is the use of fertilizers. The aim of the present study was to investigate the effects of nitrogen fertilizer, and the addition of carbon through sawdust, sucrose and litter, on vegetation dynamics at a representative municipal waste landfill in South Korea: Kyongseodong. A total of 288 permanent plots $(0.25m^2)$ were established and treated with nitrogen fertilizer (5, 10 and $20Ng/m^2$), sawdust $(289g/m^2)$ sucrose $(222g/m^2)$ and litter $(222g/m^2)$. The aboveground biomass was significantly enhanced by nitrogen fertilizer at 5 and $10Ng/m^2$, compared with the control plots. The total cover of all plant species increased significantly on plots treated with 5 and $20Ng/m^2$, as well as on those treated with sawdust and sucrose, compared with the control plots. The higher species richness after nitrogen fertilization of 10 to $20Ng/m^2$, and the sawdust and sucrose treatment demonstrated that this was an appropriate restoration option for nutrient deficient waste landfills. This study demonstrated positive nutrient impacts on plant biomass and species richness, despite the fact that municipal waste landfills are ecosystems that are highly disturbed by anthropogenic and internal factors (landfill gas and leachate). Adequate N and C combined treatments will accelerate species succession (higher species richness and perennial increase) for restoration of waste landfills.

A Comparative Study on the Intake, Digestibility, Nitrogen and Energy Utilization of Sward from Wildflower Pasture by Korean Native Goats (야생화 도입 초지에서 생산된 초류의 질소 및 에너지 이용성 비교)

  • 김득수;이인덕;이형석
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.4
    • /
    • pp.247-252
    • /
    • 2001
  • To access the feeding value of the herbage produced from the wildflower pasture, DM intake, digestibility and utilization of nitrogen and energy of herbages by Korean native goats were determined. The experimental herbage included two treatments: Conventional pasture(forage 6 species), wildflower pasture(turf grass 6 species + native wildflower 11 species + introduced wildflower 9 species). The voluntary DM intake of Korean native goats fed with herbages harvested from conventional pasture was higher than that from wildflower pasture(p<0.05). The digestibility of DM, NDF and ADF from conventional pasture was slightly higher than that of wildflower pasture, but no significant difference was observed(p>0.05). The utilization of nitrogen and energy by Korean native goats did not show any difference(pz0.05). In conclusion, the utilization of nitrogen and energy by Korean native goats did not show any significant difference. Thus, possibility of utilizing herbages from wildflower pasture for livestock was to be some extent expected. (Key words : Wildflower pasture, Digestibility, Nitrogen utilization, Energy utilization, Korean native goat)

  • PDF

A Study on Nitrogen Metabolism of Lemnaceae: Assimilation of Nitrate and Ammonia in Spirodela polyrhiza and Lemna aequinoctialis (개구리밥과 식물의 질소대사에 관한 연구: 개구리밥(Spirodela polyrhiza)과 좀개구리밥(Lemna aequinoctialis)의 NO3-와 NH4-의 동화작용)

  • 장남기
    • Journal of Plant Biology
    • /
    • v.34 no.4
    • /
    • pp.253-260
    • /
    • 1991
  • Spirodela polyrhiza and Lemna aequinoctialis often occurred at the sites of high ammonium concentration and at the sites of high nitrate concentration, respectively. We investigated the different distribution between two species in relation to the type of nitrogen sources and their concentrations. Our experiments showed that L. aequinoctialis grew faster than S. polyrhiza in nitrate media with lower than 15 mM concentration. The nitrate uptake was also faster in L. aequinoctialis than in S. polyrhiza. However, neither differences in growth nor in uptake patterns between these two species were observed in ammonium media. Glutamine synthetase (GS), glutamate dehydrogenase (GDH) and glutamate synthetase (GOGAT) activities were higher in L. aequinoctialis. In particular, nitrate reductase activity (NRA) in L. aequinoctialis was 12.1 times as high as that in S. polyrhiza. These results showed that the two species responded varyingly to the types of nitrogen sources and their concentrations. Therefore, the difference in geographic distribution between the two species appeared to reflect the interspecific differences in enzyme activities and, subsequently, nitrogen absorption abilities.

  • PDF