Browse > Article
http://dx.doi.org/10.12772/TSE.2021.58.313

Electrochemical Properties of Nitrogen-doped Graphite via Pyrolysis of PVP  

Kim, Jin Soo (Department of Organic Materials and Fiber Engineering, Jeonbuk National University)
Seo, Hae Cheon (Department of Organic Materials and Fiber Engineering, Jeonbuk National University)
Jeon, Se Jin (Department of Organic Materials and Fiber Engineering, Jeonbuk National University)
Sun, Min Young (Division of Mechanical Design Engineering, Jeonbuk National University)
Kim, Hyun-Chel (Department of Beauty Industry, Chungwoon University)
Khil, Myung-Seob (Department of Organic Materials and Fiber Engineering, Jeonbuk National University)
Publication Information
Textile Science and Engineering / v.58, no.6, 2021 , pp. 313-321 More about this Journal
Abstract
Despite considerable efforts to develop alternatives to graphite, it remains the dominant anode material in commercially available energy storage systems, such as lithium-ion batteries and supercapacitors, owing to its low electrical resistivity, thermal expansion, and low cost. In this work, nitrogen-doped graphite was prepared via polyvinylpyrrolidone pyrolysis to enhance the performance of graphite-based electrodes. The asprepared N-doped graphite was investigated in detail by field-emission scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge. The results show that N-doped graphite (N content of 2.52 wt%) synthesized at 700 ℃ exhibits a high specific capacitance of 32.85 F g-1 at 1 A g-1, which is approximately three times greater than that of pristine graphite.
Keywords
graphite; polyvinylpyrrolidone(PVP); N-doping; electrochemical property; nitrogen species;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. M. Yun, S. H. Park, Y. H. Hwang, E. S. Lee, U. Maiti, H. N. Moon, B. H. Kim, B. S. Bae, Y. H. Kim, and S. O. Kim, "Complementary p- and n-type Polymer Doping for Ambient Stable Graphene Inverter", ACS Nano, 2014, 8, 650-656.   DOI
2 D. S. Jeong, J. M. Yun, and K. H. Kim, "Highly Porous Nitrogen-doped Carbon for Superior Electric Double-layer Capacitors", RSC Adv., 2017, 7, 44735-44742.   DOI
3 C. Bie, H. Yu, B. Cheng, W. Ho, J. Fan, and J. Yu, "Design, Fabrication, and Mechanism of Nitrogen-doped Graphene-based Photocatalyst", Adv. Mater., 2021, 33, 2003521.   DOI
4 Z. Zafar, Z. H. Ni, X. Wu, Z. X. Shi, H. Y. Nan, J. Bai, and L. T. Sun, "Evolution of Raman Spectra in Nitrogen Doped Graphene", Carbon, 2013, 61, 57-62.   DOI
5 Y. F. Lu, S. T. Lo, J. C. Lin, W. Zhang, J. Y. Lu, F. H. Liu, C. M. Tseng, Y. H. Lee, C. T. Liang, and L. J. Li, "Nitrogen-doped Graphene Sheets Grown by Chemical Vapor Deposition: Synthesis and Influence of Nitrogen Impurities on Carrier Transport", ACS Nano, 2013, 7, 6522-6532.   DOI
6 D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W. X. Li, Q. Fu, X. Ma, Q. Xue, G. Sun, and X. Bao, "Toward N-doped Graphene via Solvothermal Synthesis", Chem. Mater., 2011, 23, 1188-1193.   DOI
7 J. G. Kim, H. C. Kim, N. D. Kim, and M. S. Khil, "N-doped Hierarchical Porous Hollow Carbon Nanofibers Based on PAN/PVP@SAN Structure for High Performance Supercapacitor", Compos. Part B: Eng., 2020, 186, 107825.   DOI
8 E. J. Ra, M. H. Tran, S. H. Yang, T. H. Kim, C. S. Yang, Y. J. Chung, Y. K. Lee, I. J. Kim, and H. K. Jeong, "Synthesis of Nitrogen Doped Graphite Oxide and Its Electrochemical Properties", Current Appl. Phys., 2014, 14, 82-86.   DOI
9 X. Li, X. Chen, Y. Zhao, Y. Deng, J. Zhu, S. Jiang, and R. Wang, "Flexible All-solid-state Supercapacitors Based on an Intergrated Electrode of Hollow N-doped Carbon Nanofibers Embedded with Graphene Nanosheets", Electrochimica Acta, 2020, 332, 135398.   DOI
10 A. Gonzalez, E. Goikolea, J. A. Barrena, and R. Mysyk, "Review on Supercapacitors: Technologies and Materials", Renewable and Sustainable Energy Reviews, 2016, 58, 1189-1206.   DOI
11 Y. Wang, Y. Song, and Y. Xia, "Electrochemical Capacitors: Mechanism, Materials, Systems, Characterization and Applications", Chem. Soc. Rev., 2016, 45, 5925-5950.   DOI
12 Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, "Progress of Electrochemical Capacitor Electrode Materials: A Review", Int. J. Hydrogen Energy, 2009, 34, 4889-4899.   DOI
13 A. Amiri, B. Conlee, I. Tallerine, W. J. Kennedy, and M. Naraghi, "A Novel Path Towards Synthesis of Nitrogen-rich Porous Carbon Nanofibers for High Performance Supercapactiors", Chem. Eng. J., 2020, 399, 125788.   DOI
14 D. Usachov, O. Vilkov, A. Gruneis, D. Haberer, A. Fedorov, V. K. Adamchuk, A. B. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, C. Laubschat, and D. V. Vyalikh, "Nitrogen-doped Graphene: Efficient Growth, Structure, and Electronic Properties", Nano Lett., 2011, 11, 5401-5407.   DOI
15 D. D. L. Chung, "Review Graphite", J. Mater. Sci., 2002, 37, 1475-1489.   DOI
16 G. Wang, L. Zhang, and J. Zhang, "A Review of Electrode Materials for Electrochemical Supercapacitors", Chem. Soc. Rev., 2012, 41, 797-828.   DOI
17 M. Velicky, P. S. Toth, C. R. Woods, K. S. Novoselov, and R. A. W. Dryfe, "Electrochemistry of the Basal Plane versus Edge Plane of Graphite Revisited", J. Phys. Chem. C, 2019, 123, 11677-11685.   DOI
18 J. Lia, S. Ye, T. Li, X. Li, X. Yang, and S. Ding, "Preparation of Graphene Nanoribbons (GNRs) as an Electronic Component with the Multi-walled Carbon Nanotubes (MWCNTs)", Procedia Engineering, 2015, 102, 492-498.   DOI
19 C. de las Casas and W. Li, "A Review of Application of Carbon Nanotubes for Lithium Ion Battery Anode Material", J. Power Sources, 2012, 208, 74-85.   DOI
20 Y. Li, L. Liu, Y. Wu, T. Wu, H. Wu, Q. Cai, Y. Xu, B. Zeng, C. Yuan, and L. Dai, "Facile Synthesis of Nitrogen-doped Carbon Materials with Hierarchical Porous Structures for High-performance Supercapacitors in Both Acidic and Alkaline Electrolytes", J. Mater. Chem. A, 2019, 7, 13154-13163.   DOI
21 M. Kang, D. H. Lee, J. Yang, Y.-M. Kang, and H. Jung, "Simultaneous Reduction and Nitrogen Doping of Graphite Oxide by Using Electron Beam Irradiation", RSC Adv., 2015, 5, 104502-104508.   DOI
22 M. M. Hantel, T. Kaspar, R. Nesper, A. Wokaun, and R. Kotz, "Partially Reduced Graphite Oxide for Supercapacitor Electrodes: Effect of Graphene Layer Spacing and Huge Specific Capacitance", Electrochemistry Communications, 2011, 13, 90-92.   DOI
23 C. Liu, X. Liu, J. Tan, Q. F. Wang, H. Wen, and C. H. Zhang, "Nitrogen-doped Graphene by All-solid-state Ball-milling Graphite with Urea as a High-power Lithium Ion Battery Anode", J. Power Sources, 2017, 342, 157-164.   DOI
24 H. Q. Li, Y. G. Wang, C. X. Wang, and Y. Y. Xia, "A Competitive Candidate Material for Aqueous Supercapacitors: High Surface-area Graphite", J. Power Sources, 2008, 185, 1557-1562.   DOI
25 S. Dai, Z. Liu, B. Zhao, J. Zeng, H. Hu, Q. Zhang, D. Chen, C. Qu, D. Dang, and M. Liu, "A High-performance Supercapacitor Electrode Based on N-doped Porous Graphene", J. Power Sources, 2018, 387, 43-48.   DOI
26 W. Zhang, Z. Chen, X. Guo, K. Jin, Y. Wang, L. Li, Y. Zhang, Z. Wang, L. Sun, and T. Zhang, "N/S Co-doped Three-dimensional Graphene Hydrogel for High Performance Supercapacitor", Electrochimica Acta, 2018, 278, 51-60.   DOI
27 T. Horikawa, N. Sakao, T. Sekida, J. Hayashi, D. D. Do, and M. Katoh, "Preparation of Nitrogen-doped Porous Carbon by Ammonia Gas Treatment and the Effects of N-doping on Water Adsorption", Carbon, 2012, 50, 1833-1842.   DOI
28 J. Yang, X. Duan, W. Guo, D. Li, H. Zhang, and W. Zheng, "Electrochemical Performances Investigation of NiS/rGO Composite as Electrode Material for Supercapacitors", Nano Energy, 2014, 5, 74-81.   DOI
29 Y. Hu, H. Liu, Q. Ke, and J. Wang, "Effects of Nitrogen Doping on Supercapacitor Performance of a Mesoporous Carbon Electrode Produced by a Hydrothermal Soft-templating Process", J. Mater. Chem. A, 2014, 2, 11753-11758.   DOI
30 Z. H. Sheng, L. Shao, J. J. Chen, W. J. Bao, F. B. Wang, and X. H. Xia, "Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis", ACS Nano, 2011, 5, 4350-4358.   DOI