DOI QR코드

DOI QR Code

Measurement of Residual Stress of AlN Thin Films Deposited by Two-Facing-Targets (TFT) Sputtering System

Two-Facing-Targets (TFT) 스퍼터링장치를 이용하여 증착한 AlN박막의 잔류응력 측정

  • Han, Chang-Suk (Dept. of ICT Automotive Engineering, Hoseo University) ;
  • Kwon, Yong-Jun (Dept. of ICT Automotive Engineering, Hoseo University)
  • 한창석 (호서대학교 자동차ICT공학과) ;
  • 권용준 (호서대학교 자동차ICT공학과)
  • Received : 2021.08.31
  • Accepted : 2021.12.09
  • Published : 2021.12.27

Abstract

Aluminum nitride having a dense hexagonal structure is used as a high-temperature material because of its excellent heat resistance and high mechanical strength; its excellent piezoelectric properties are also attracting attention. The structure and residual stress of AlN thin films formed on glass substrate using TFT sputtering system are examined by XRD. The deposition conditions are nitrogen gas pressures of 1 × 10-2, 6 × 10-3, and 3 × 10-3, substrate temperature of 523 K, and sputtering time of 120 min. The structure of the AlN thin film is columnar, having a c-axis, i.e., a <00·1> orientation, which is the normal direction of the glass substrate. An X-ray stress measurement method for crystalline thin films with orientation properties such as columnar structure is proposed and applied to the residual stress measurement of AlN thin films with orientation <00·1>. Strength of diffraction lines other than 00·2 diffraction is very weak. As a result of stress measurement using AlN powder sample as a comparative standard sample, tensile residual stress is obtained when the nitrogen gas pressure is low, but the gas pressure increases as the residual stress is shifts toward compression. At low gas pressure, the unit cell expands due to the incorporation of excess nitrogen atoms.

Keywords

Acknowledgement

This research was supported by the Academic Research Fund of Hoseo University in 2020 (20200850)

References

  1. C. S. Oh and C. S. Han, Korean J. Met. Mater., 50, 78 (2012). https://doi.org/10.3365/KJMM.2012.50.1.078
  2. U. C. Kaletta and C. Wenger, Ultrasonics, 54, 291 (2014). https://doi.org/10.1016/j.ultras.2013.04.009
  3. X. Meng, C. Yang and Q. Chen, Mater. Lett., 90, 49 (2013). https://doi.org/10.1016/j.matlet.2012.09.010
  4. H. Y. Liu, G. S. Tang and F. Zeng, J. Cryst. Growth., 363, 80 (2013). https://doi.org/10.1016/j.jcrysgro.2012.10.008
  5. B. Hoffmann, O. Vohringer and E. Macherauch, Mater. Sci. Eng., A, 319/321, 299 (2001). https://doi.org/10.1016/S0921-5093(01)00978-9
  6. H. Behnken and V. Hauk, Mater. Sci. Eng., A, 289, 60 (2000). https://doi.org/10.1016/S0921-5093(00)00923-0
  7. P. Juijerm, I. Altenberger and B. Scholtes, Mater. Sci. Eng., A, 426, 4 (2006). https://doi.org/10.1016/j.msea.2005.11.064
  8. V. M. Hauk and G. J. Vaessen, Metall. Mater. Trans. A, 15A, 1407 (1984).
  9. A. Kampfe, B. Eigenmann and D. Lohe, Z. Metallkde., 91, 967 (2000).
  10. C. S. Han and O. Nittono, Korean J. Met. Mater., 39, 253 (2001).
  11. V. M. Torres, M. Stevens and J. L. Edwards, Appl. Phys. Lett., 71, 1365 (1997). https://doi.org/10.1063/1.119895
  12. W. M. Yim and R. J. Paff, J. Appl. Phys., 45, 1456 (1974). https://doi.org/10.1063/1.1663432
  13. A. Calka and J. I. Nikolov, Nanostruct. Mater.. 6, 409 (1995). https://doi.org/10.1016/0965-9773(95)00083-6
  14. Y. Jin and L. Li, J. Appl. Mech., 21, 13 (2004).
  15. W. Cheng and I. Finnie, J. Eng. Mater. Tech., 108, 87 (1986). https://doi.org/10.1115/1.3225864
  16. G. Este and W. D. Westwood, J. Vac. Sci. Technol., A, A5, 1892 (1987).
  17. D. W. Hoffman and J. A. Thornton, Thin Solid Films, 45, 387 (1977). https://doi.org/10.1016/0040-6090(77)90276-0
  18. J. A. Thornton and D. W. Hoffman, J. Vac. Sci. Technol., A, A3, 576 (1985).
  19. C. S. Oh and C. S. Han, Korean J. Met. Mater., 50, 248 (2012). https://doi.org/10.3365/KJMM.2012.50.3.248
  20. G. Nicolas and M. Autric, Appl. Surf. Sci., 109/110, 477 (1997). https://doi.org/10.1016/S0169-4332(96)00923-3