DOI QR코드

DOI QR Code

Effect of Flux Chloride Composition on Microstructure and Coating Properties of Zn-Mg-Al Ternary Alloy Coated Steel Product

플럭스 염화물 조성이 Zn-Mg-Al 3원계 합금도금층의 미세조직 및 도금성에 미치는 영향

  • Kim, Ki-Yeon (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • So, Seong-Min (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Oh, Min-Suk (Division of Advanced Materials Engineering, Jeonbuk National University)
  • 김기연 (전북대학교 신소재공학부 금속시스템공학과) ;
  • 소성민 (전북대학교 신소재공학부 금속시스템공학과) ;
  • 오민석 (전북대학교 신소재공학부 금속시스템공학과)
  • Received : 2021.11.03
  • Accepted : 2021.12.10
  • Published : 2021.12.27

Abstract

In the flux used in the batch galvanizing process, the effect of the component ratio of NH4Cl to ZnCl2 on the microstructure, coating adhesion, and corrosion resistance of Zn-Mg-Al ternary alloy-coated steel is evaluated. Many defects such as cracks and bare spots are formed inside the Zn-Mg-Al coating layer during treatment with the flux composition generally used for Zn coating. Deterioration of the coating property is due to the formation of AlClx mixture generated by the reaction of Al element and chloride in the flux. The coatability of the Zn-Mg-Al alloy coating is improved by increasing the content of ZnCl2 in the flux to reduce the amount of chlorine reacting with Al while maintaining the flux effect and the coating adhesion is improved as the component ratio of NH4Cl to ZnCl2 decreases. Zn-Mg-Al alloy-coated steel products treated with the optimized flux composition of NH4Cl·3ZnCl2 show superior corrosion resistance compared to Zn-coated steel products, even with a coating weight of 60 %.

Keywords

Acknowledgement

This work was supported by the [National Research Foundation of Korea (NRF)] grant funded by the Korea Government (Ministry of Science and ICT) [No. 2019R1A2C1007552]. This work was also supported by the Technology development Program (S3160560) funded by the Ministry of SMEs and Startups (MSS, Korea) and a Korea Institute for Advancement of Technology grant, funded by the Korean Government (MOTIE) (P0002019), as part of the Competency Development Program for Industry Specialists.

References

  1. H. C. Shih, J. W. Hsu, C. N. Sun and S. C. Chung, Surf. Coat. Technol., 150, 70 (2002). https://doi.org/10.1016/S0257-8972(01)01508-0
  2. N. Pistofidis, G. Vourlias, S. Konidaris, E. Pavlidou, A. Stergiou and G. Stergioudis, Mater. Lett., 60, 786 (2006). https://doi.org/10.1016/j.matlet.2005.10.013
  3. J. W. Lee, S. Y. Oh, B. Park, M. S. Oh and S. J. Kim, Korean J. Met. Mater., 58, 610 (2020). https://doi.org/10.3365/kjmm.2020.58.9.610
  4. A. R. Marder, Prog. Mater. Sci., 45, 191 (2000). https://doi.org/10.1016/S0079-6425(98)00006-1
  5. A. Amadeh, B. Pahlevani and S. Heshmati-Manesh, Corros. Sci., 44, 2321 (2002). https://doi.org/10.1016/S0010-938X(02)00043-4
  6. J. Xu, B. Li and X. Mi, Hans J. Chem. Eng. Technol., 6, 71 (2016). https://doi.org/10.12677/hjcet.2016.63009
  7. F. Sjoukes, Anti-Corros. Methods Mater., 37, 12 (1990). https://doi.org/10.1108/eb007267
  8. N. Pistofidis, G. Vourlias, S. Konidaris, E. Pavlidou, G. Stergioudis and D. Tsipas, Cryst. Res. Technol., 41, 759 (2006). https://doi.org/10.1002/crat.200510664
  9. T. H. Cook, Met. Finish., 101, 22 (2003). https://doi.org/10.1016/S0026-0576(03)90187-5
  10. J. W. Lee, B. R. Park, S. Y. Oh, D. W. Yun, J. K. Hwang, M. S. Oh and S. J. Kim, Corros. Sci., 160, 108170 (2019). https://doi.org/10.1016/j.corsci.2019.108170
  11. M. S. Oh, S. H. Kim, J. S. Kim, J. W. Lee, J. H. Shon and Y. S. Jin, Met. Mater. Int., 22, 26 (2016). https://doi.org/10.1007/s12540-015-5411-9
  12. S. Schuerz, M. Fleischanderl, G. H. Luckeneder, K. Preis, T. Haunschmied, G. Mori and A. C. Kneissl, Corros. Sci., 51, 2355 (2009). https://doi.org/10.1016/j.corsci.2009.06.019
  13. A. Du, Y. Huo and J. Hu, Adv. Mater. Res., 433, 111 (2012). https://doi.org/10.4028/www.scientific.net/AMR.433-440.111
  14. M. Manna, Surf. Coat. Technol., 205, 3716 (2011). https://doi.org/10.1016/j.surfcoat.2011.01.026
  15. T. Liu, R. Ma, Y. Fan, A. Du, X. Zhao, M. Wen and X. Cao, Surf. Coat. Technol., 337, 270 (2018). https://doi.org/10.1016/j.surfcoat.2018.01.032
  16. L. A. Rocha and M. A. Barbosa, Corrosion, 47, 536 (1991). https://doi.org/10.5006/1.3585290
  17. M. Saternus and H. Kania, Materials., 14, 1259 (2021). https://doi.org/10.3390/ma14051259
  18. ASTM international. Standard Practice for Operating Salt Spray (Fog) Apparatus. Products & Services. Retrieved December 17, 2021 from https://www.astm.org/b0117-19.html.
  19. C. E. Jordan and A. R. Marder, J. Mater. Sci., 32, 5593 (1997). https://doi.org/10.1023/A:1018680625668
  20. D. Kopycinski and E. Guzik, Solid State Phenom., 197, 77 (2013). https://doi.org/10.4028/www.scientific.net/SSP.197.77
  21. R. F. Lynch, J. Met., 8, 39 (1987).
  22. L. Chen, R. Fourmentin and J. R. Mcdermid, Metall. Mater. Trans. A., 39, 2128 (2008). https://doi.org/10.1007/s11661-008-9552-z
  23. T. Harada, Bull. Chem. Soc. Jpn., 10, 379 (1935). https://doi.org/10.1246/bcsj.10.379
  24. P. Maass, P. Peissker, Handbook of Hot-dip Galvanization, p.29-90, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2011).
  25. H. Asgari, M. R. Toroghinejad and M. A. Golozar, Curr. Appl. Phys., 9, 59 (2009). https://doi.org/10.1016/j.cap.2007.10.090
  26. R. Krieg, A. Vimalanandan and M. Rohwerder, J. Electrochem. Soc., 161, C156 (2014). https://doi.org/10.1149/2.103403jes
  27. E. Diler, B. Rouvellou, S. Rioual, B. Lescop, G. Nguyen Vien, D. Thierry, Corros. Sci., 87, 111 (2014). https://doi.org/10.1016/j.corsci.2014.06.017
  28. M. Dutta, A. K. Halder and S. B. Singh, Surf. Coat. Technol., 205, 2578 (2010). https://doi.org/10.1016/j.surfcoat.2010.10.006
  29. N. C. Hosking, M. A. Strom, P. H. Shipway and C. D. Rudd, Corros. Sci., 49, 3669 (2007). https://doi.org/10.1016/j.corsci.2007.03.032