DOI QR코드

DOI QR Code

Zr-7Cu Alloy Design According to Sn Content for Bio-Metallic Materials

금속 생체재료를 위한 Sn 함량에 따른 Zr-7Cu 합금설계

  • Kim, Min-Suk (Department of Advanced Materials Engineering, Chosun University) ;
  • Kim, Chung-Seok (Department of Materials Science and Engineering, Chosun University)
  • 김민석 (조선대학교 첨단소재공학과) ;
  • 김정석 (조선대학교 신소재공학과)
  • Received : 2021.11.10
  • Accepted : 2021.12.07
  • Published : 2021.12.27

Abstract

The purpose of this study is to develop a zirconium-based alloy with low modulus and magnetic susceptibility to prevent the stress-shielding effect and the generation of artifacts. Zr-7Cu-xSn (x = 1, 5, 10, 15 mass%) alloys are prepared by an arc melting process. Microstructure characterization is performed by microscopy and X-ray diffraction. Mechanical properties are evaluated using micro Vickers hardness and compression test. The magnetic susceptibility is evaluated using a SQUID-VSM. The average magnetic susceptibility value of the Zr-7Cu-xSn alloy is 1.176 × 10-8 cm3g-1. Corrosion tests of zirconium-based alloys are conducted through polarization test. The average Icorr value of the Zr-7Cu-xSn alloy is 0.1912 ㎂/cm2. The elastic modulus value of 14 ~ 18 GPa of the zirconium-based alloy is very similar to the elastic modulus value of 15 ~ 30 GPa of the human bone. Consequently, the Sn added zirconium alloy, Zr-7Cu-xSn, is very interesting and attractive as a biomaterial that reduces the stress-shielding effect caused by differences of elastic modulus between human bone and metallic implants. In addition, this material has the potential to be used in metallic dental implants to effectively eliminate artifacts in MRI images due to low magnetic susceptibility.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (No. 2020R1I1A3A0403690312)

References

  1. D. D. Kiradzhiyska and R. D. Mantcheva, Folia Med., 61, 34 (2019). https://doi.org/10.2478/folmed-2018-0038
  2. K. Miura, N. Yamada, S. Hanada, T.-K. Jung and E. Itoi, Acta Biomater., 7, 2320 (2011). https://doi.org/10.1016/j.actbio.2011.02.008
  3. J.-M. Seo, S. J. Kim, H. Chung, E. T. Kim, H. G. Yu and Y. S. Yu, Mater. Sci. Eng., C, 24, 585 (2004). https://doi.org/10.1016/j.msec.2003.12.001
  4. G. R. Parr, L. K. Gardner and R. W. Toth, J. Prosthet. Dent, 54, 410 (1985). https://doi.org/10.1016/0022-3913(85)90562-1
  5. Y. Okazaki and E. Gotoh, Biomater, 26, 11 (2005). https://doi.org/10.1016/j.biomaterials.2004.02.005
  6. C. Zhang, L. Zhang, L. Liu, L. Lv, L. Gao, N. Liu, X. Wang and J. Ye, J. Orthop. Surg. Res., 15, 40 (2020). https://doi.org/10.1186/s13018-019-1489-y
  7. M. Long and H. J. Rack, Biomater, 19, 1621 (1998). https://doi.org/10.1016/S0142-9612(97)00146-4
  8. S. Nag, R. Banerjee and H. Fraser, Acta Biomater., 3, 369 (2007). https://doi.org/10.1016/j.actbio.2006.08.005
  9. F. Shafiei, E. Honda, H. Takahashi and T. Sasaki, J. Dent. Res., 82, 602 (2003). https://doi.org/10.1177/154405910308200806
  10. T. Ernstberger, G. Heidrich, T. Bruening, S. Krefft, G. Buchhorn and H. M. Klinger, Eur. Spine. J., 16, 179 (2007). https://doi.org/10.1007/s00586-006-0064-5
  11. H. D. Kocasarac, G. Ustaoglu, S. Bayrak, R. Katkar, H. Geha and M. Noujeim, Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 128, e161 (2019).
  12. K. T. Park, T. H. Lee, N. C. Jo, H. H. Nersisyan, B. S. Chun, H. H. Lee and J. H. Lee, J. Nucl. Mater., 436, 130 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.310
  13. Y. Yan and Y. Han, Surf. Coat. Technol., 201, 5692 (2007). https://doi.org/10.1016/j.surfcoat.2006.07.058
  14. S. Vadlakonda, R. Banerjee, A. Puthcode and R. Mirshams, Mater. Sci. Eng., A, 434, 372 (2006). https://doi.org/10.1016/j.msea.2006.07.093
  15. C. Wei, L. Luo, Z. Wu, J. Zhang, S. Su and Y. Zhan, J. Mech. Behav. Biomed. Mater., 111, 104017 (2020). https://doi.org/10.1016/j.jmbbm.2020.104017
  16. A. Mehjabeen, T. Song, W. Xu, H. P. Tang and M. Qian, Adv. Eng. Mater., 20, 1800207 (2018). https://doi.org/10.1002/adem.201800207
  17. H. Okamoto, J. Phase Equilib. Diffus., 31, 411 (2010). https://doi.org/10.1007/s11669-010-9734-4
  18. M. Niinomi, Mater. Sci. Eng., A, 243, 231 (1998). https://doi.org/10.1016/S0921-5093(97)00806-X
  19. G. J. Hwang, Master's Thesis, p.1, Chosun University, Seoul, Republic of Korea (2018).
  20. Li, Y. Zhan and W. Jiang, Mater. Des., 34, 479 (2012). https://doi.org/10.1016/j.matdes.2011.08.012
  21. J. F. Schenck, Med. Phys., 23, 815 (1996). https://doi.org/10.1118/1.597854
  22. G. P. Arrighini, M. Maestro and R. Moccia, J. Chem. Phys., 49, 882 (1968). https://doi.org/10.1063/1.1670155
  23. W. M. Spees, D. A. Yablonskiy, M. C. Oswood and J. J. H. Ackerman, Magn. Reson. Med., 45, 533 (2001). https://doi.org/10.1002/mrm.1072
  24. V. Jain, O. Abdulmalik, K. J. Propert and F. W. Wehrli, Magn. Reson. Med., 68, 863 (2012). https://doi.org/10.1002/mrm.23282
  25. F. Y. Zhou, K. J. Qiu, H. F. Li, T. Huang, B. L. Wang, L. Li and Y. F. Zheng, Acta Biomater., 9, 9578 (2013). https://doi.org/10.1016/j.actbio.2013.07.035
  26. F. Y. Zhou, K. J. Qiu, D. Bian, Y. F. Zheng and J. P. Lin, J. Mater. Sci. Technol., 30, 299 (2014). https://doi.org/10.1016/j.jmst.2013.12.006
  27. M.-J. Kim, Y.-W. Jang, Y.-H. Yoo, J.-J. Kim and J.-G. Kim, J. Korean Electrochem. Soc., 13, 96 (2010). https://doi.org/10.5229/JKES.2010.13.2.096
  28. S. G. S. Charlena and M. Fajar, J. Phys. Conf., 776, 012056 (2016). https://doi.org/10.1088/1742-6596/776/1/012056
  29. J. M. Salman and M. L. Aziz, IQJMME, 19, 138 (2019). https://doi.org/10.32852/iqjfmme.v19i2.312
  30. N. Eliaz, Materials, 12, 407 (2019). https://doi.org/10.3390/ma12030407
  31. Suresh N. Kadam, Kailash R. Jagdeo and M. R. Nair, IRJES, 3, 30 (2014).
  32. R. Xue, D. Wang, D. Yang, L. Zhang, X. Xu, L. Liu and D. Wu, Materials, 13, 5130 (2020). https://doi.org/10.3390/ma13225130