DOI QR코드

DOI QR Code

Simultaneous Removal of NO and SO2 using Microbubble and Reducing Agent

마이크로버블과 환원제를 이용한 습식 NO 및 SO2의 동시제거

  • Song, Dong Hun (Green Materials & Processes R&D Group, Ulsan Regional Division, Korea Institute of Industrial Technology) ;
  • Kang, Jo Hong (Green Materials & Processes R&D Group, Ulsan Regional Division, Korea Institute of Industrial Technology) ;
  • Park, Hyun Sic (Green Materials & Processes R&D Group, Ulsan Regional Division, Korea Institute of Industrial Technology) ;
  • Song, Hojun (Green Materials & Processes R&D Group, Ulsan Regional Division, Korea Institute of Industrial Technology) ;
  • Chung, Yongchul G. (School of Chemical Engineering, Pusan National University)
  • 송동훈 (한국생산기술연구원 울산본부 친환경재료공정연구그룹) ;
  • 강조홍 (한국생산기술연구원 울산본부 친환경재료공정연구그룹) ;
  • 박현식 (한국생산기술연구원 울산본부 친환경재료공정연구그룹) ;
  • 송호준 (한국생산기술연구원 울산본부 친환경재료공정연구그룹) ;
  • 정용철 (부산대학교 화학공학과)
  • Received : 2021.11.18
  • Accepted : 2021.12.12
  • Published : 2021.12.31

Abstract

In combustion facilities, the nitrogen and sulfur in fossil fuels react with oxygen to generate air pollutants such as nitrogen oxides (NOX) and sulfur oxides (SOX), which are harmful to the human body and cause environmental pollution. There are regulations worldwide to reduce NOX and SOX, and various technologies are being applied to meet these regulations. There are commercialized methods to reduce NOX and SOX emissions such as selective catalytic reduction (SCR), selective non-catalytic reduction (SNCR) and wet flue gas desulfurization (WFGD), but due to the disadvantages of these methods, many studies have been conducted to simultaneously remove NOX and SOX. However, even in the NOX and SOX simultaneous removal methods, there are problems with wastewater generation due to oxidants and absorbents, costs incurred due to the use of catalysts and electrolysis to activate specific oxidants, and the harmfulness of gas oxidants themselves. Therefore, in this research, microbubbles generated in a high-pressure disperser and reducing agents were used to reduce costs and facilitate wastewater treatment in order to compensate for the shortcomings of the NOX, SOX simultaneous treatment method. It was confirmed through image processing and ESR (electron spin resonance) analysis that the disperser generates real microbubbles. NOX and SOX removal tests according to temperature were also conducted using only microbubbles. In addition, the removal efficiencies of NOX and SOX are about 75% and 99% using a reducing agent and microbubbles to reduce wastewater. When a small amount of oxidizing agent was added to this microbubble system, both NOX and SOX removal rates achieved 99% or more. Based on these findings, it is expected that this suggested method will contribute to solving the cost and environmental problems associated with the wet oxidation removal method.

연소시설에서는 화석연료에 포함된 질소와 황이 산소와 반응하여 대기 오염물질인 질소산화물(NOX)과 황산화물(SOX)을 발생시킨다. 인체에 유해하고 환경 오염을 야기하는 NOX, SOX를 저감하기 위해 전세계적으로 환경규제를 시행 중이며, 규제를 충족하기 위해 다양한 기술들을 적용하고 있다. 상용화된 NOX 및 SOX 저감방식들로 SCR (selective catalytic reduction), SNCR (selective non-catalytic reduction), WFGD (wet flue gas desulfurization) 등이 있으나 이 방식들의 단점들 때문에 NOX, SOX를 동시제거하는 연구가 근래 많이 수행되고 있다. 그러나 NOX, SOX 동시 제거 방식에서도 산화제 및 흡수제로 인한 폐수 발생에 대한 문제점, 특정 산화제를 활성화 하기 위한 촉매 및 전기분해 사용에 따른 비용 발생, 마지막으로 기체 산화제들 자체 유해성의 문제점을 가지고 있다. 따라서 본 연구에서는 NOX, SOX 동시처리 방식의 단점들을 보완하고자 고압분산기에서 생성된 마이크로버블과 환원제를 이용하여 비용절감 및 폐수처리 시 환경부하저감 가능성을 확인해 하고자 하였다. 분산기가 마이크로버블을 생성하는 것을 이미지 프로세싱과 ESR (electron spin resonance) 분석을 통해 확인하였으며, 마이크로버블만을 이용하여 온도에 따른 NOX, SOX 제거율 성능 테스트도 진행하였다. 뿐만 아니라 폐수를 저감하기 위해 환원제와 마이크로버블을 이용하여 습식으로 NOX 제거율 약 75%, SOX 제거율 99%를 달성하였다. 본 마이크로버블 시스템에 산화제를 함께 투여할 경우 NOX, SOX제거율 모두 99%이상을 달성 하였다. 이러한 연구 결과를 토대로 습식산화제거방식을 적용하는 시설의 단점이었던 비용 및 환경 문제를 해결함에 기여할 수 있을 것으로 기대 된다.

Keywords

Acknowledgement

본 논문은 한국생산기술연구원 기관주요사업 "전주기적 자원순환 대응 친환경 생산시스템 기술개발(2/6) (kitech-EO-21-0014)"과 중소벤처기업부의 기술개발사업(S2916047)의 지원으로 수행되었습니다.

References

  1. Lee, S. I., Cho, K. C., and Shin, C. K., "Development of Magnetic Fluid Scrubber for NOX and SOX Gas," J. Korea Soc. Environ. Administration, 5(2), 429-436 (1999).
  2. Gong, S. Y., Bae, H. J., Yoon, D. O., Hong, S. P., and Park, H. Y., "A Study on the Health Impact and Management Policy of PM2.5 in Korea I," Korea Enviroment Institute, Research Report, No. 2012-03, 1-209 (2012).
  3. Park, C. W., Kim, H. S., Woo, S. J., and Kim, Y. R., "Study on Emission Reduction with Injection Strategy and Exhaust-Gas Recirculation in Gasoline Direct Injection Engine," Trans. Korean Soc. Mech. Eng. B, 36(3), 335-342 (2012). https://doi.org/10.3795/KSME-B.2012.36.3.335
  4. Kwon, J. M., and Lee, C. H., "Novel Adsorbent for Production of Ultra Low Sulfur Diesel," Theories and Applications of Chem. Eng., 12(2), 1717 (2006).
  5. Park, M. S., Hong, R. J., and Han, N. H., "A Study on the International Instruments of Air Pollution Prevention from Ships," Maritime Law & Policy Review, 21(2), 1-36 (2009).
  6. Lee, J. H., Kim, B. J., Jeon, S. B., Cho, J. H., Kang, M. K., and Oh, K. J., "Oxidation and Removal of NO Emission from Ship Using Hydrogen Peroxide Photolysis," Clean Technol., 23(3), 294-301 (2017).
  7. Park, C. H., and Kim, Y. S., "A Study on NOX Emission Control Methods in the Cement Firing Process Using Data Mining Techniques," J. Korean Soc. Qual. Manag., 46(3), 739-752 (2018). https://doi.org/10.7469/JKSQM.2018.46.3.739
  8. Jung, Y. K., Lee, J. D., Park, N. K., and Lee, T. J., "Effect of Additives on Zinc-based Desulfurization Sorbents for hot Coal Gas Clean-up," J. Korean Ind. Eng. Chem, 7(1), 169-172 (2003).
  9. Kim, S. J., "Low NOX Combustion Technology," Clean Technol., 2(1), 22-31 (1996).
  10. Jeong, H. U., "Development of Funnel Integrated Type SOX Scrubber," BSNAK, 56(1), 34-38 (2019).
  11. Burch, R., Halpin, E., and Sullivan, J., "A Comparison of the Selective Catalytic Reduction of NOX over Al2O3 and Sulphated Al2O3 Using CH3OH and C3H8 as Reductants," Appl. Catal. B, 17(1-2), 115-129 (1998). https://doi.org/10.1016/S0926-3373(98)00005-8
  12. Pieterse, J. A. Z., van den Brink, R. W., Booneveld, F. A., and de Bruijn, F. A., "Influence of Zeolite Structure on the Activity and Durability of Co-Pd-zeolite Catalysts in the Reduction of NOX with Methane," Appl. Catal. B, 46(2), 239-250 (2003). https://doi.org/10.1016/S0926-3373(03)00213-3
  13. Bae, S. W., Roh, S. A., and Kim, S. D., "NO Removal by Reducing Agents and Additives in the Selective Non-catalytic Reduction (SNCR) process," Chemosphere, 65(1), 170-175 (2006). https://doi.org/10.1016/j.chemosphere.2006.02.040
  14. Seo, J. H., Kim, Y. J., Cho, K. H., Cho, J. S., Han, K. H., and Yoon, D. Y., "Trend of Nitrogen Oxide Reduction Technologies in Cement Industry," Resour. Recycl., 29(6), 114-124 (2020). https://doi.org/10.7844/KIRR.2020.29.6.114
  15. Ma, X., Kaneko, T., Tashimo, T., Yoshida, T., and Kato, K., "Use of Limestone for SO2 Removal from Flue Gas in the Semidry FGD Process with a Powder-particle Spouted Bed," Chem. Eng. J., 55(20), 4643-4652 (2000). https://doi.org/10.1016/S0009-2509(00)00090-7
  16. Sun, B., Dong, K., Zhao, W., Wang, J., Chu, G., Zhang, L., Zou, H., and Chen, J. F., "Simultaneous Absorption of NOX and SO2 into Na2SO3 Solution in a Rotating Packed Bed with Preoxidation by Ozone," Ind. Eng. Chem. Res., 58(19), 8332-8341 (2019). https://doi.org/10.1021/acs.iecr.9b01162
  17. Choi, J. S., Johari, S., Lee, S. D., and Lee, H., "Ionic Liquids as a SO2 Absorption Media," Clean Technol., 18(1), 22-30 (2012). https://doi.org/10.7464/KSCT.2012.18.1.022
  18. Lee, S. K., and Cho, K. M., "A Circulating Fluidized Bed Scrubbing Technology for Dry Removal of the SOX and NOX of Coal Combustion Gases," KOES SPRING MEETING Proceeding, 69-74 (1999).
  19. Shi, D., Sun, G., and Cui, Y., "Study on the Removal of NO from Flue Gas by Wet Scrubbing Using NaClO3," J. Serb. Chem. Soc., 84(10), 1183-1192 (2019). https://doi.org/10.2298/jsc190305053s
  20. Zhao, Y., Liu, F., Guo, T., and Zhao, Y., "Experiments and Reaction Characteristics of Liquid Phase Simultaneous Removal of SO2 and NO," Sci. China E, 52(6), 1768-1775 (2009). https://doi.org/10.1007/s11431-008-0322-3
  21. Han, Z., Liu, B., Yang, S., Pan, X., and Yan, Z., "NOX Removal from Simulated Marine Exhaust Gas by Wet Scrubbing Using NaClO Solution," J. Chem., 2017, 1-10 (2017).
  22. Brogren, C., Karlsson, H. T., and Bjerle, I., "Absorption of NO in an Alkaline Solution of KMnO4," Chem. Eng. Technol., 20(6), 396-402 (1997). https://doi.org/10.1002/ceat.270200607
  23. Huang, H., Hu, H., Fan, M., Chen, J., Yuan, S., and Annanurov, S., "Mechanistic Research on NO Removal by K2S2O8with Electrochemical Catalysis," Chem. Eng. J., 382, 122873 (2020). https://doi.org/10.1016/j.cej.2019.122873
  24. Ding, J., Zhong, Q., Zhang, S., Song, F., and Bu, Y., "Simultaneous Removal of NOX and SO2 from Coal-fired Flue Gas by Catalytic Oxidation-removal Process with H2O2," Chem. Eng. J., 243, 176-182 (2014). https://doi.org/10.1016/j.cej.2013.12.101
  25. Johansson, J., Heijnesson Hulten, A., Ajdari, S., Nilsson, P., Samuelsson, M., Normann, F., and Andersson, K., "Gas-Phase Chemistry of the NO-SO2-ClO2 System Applied to Flue Gas Cleaning," Ind. Eng. Chem. Res., 57(43), 14347-14354 (2018). https://doi.org/10.1021/acs.iecr.8b03067
  26. Kang, M. S., Shin, J., Yu, T. U., and Hwang, J., "Simultaneous Removal of Gaseous NOX and SO2 by Gas-phase Oxidation with Ozone and Wet Scrubbing with Sodium Hydroxide," Chem. Eng. J., 381, 122601 (2020). https://doi.org/10.1016/j.cej.2019.122601
  27. Jang, J. H., Song, H. J., Ankur, G., Shin, S. B., Lee, J. H., Park, J. W., and Jang, H. Y., "Physicochemical Nitrate Removal for High Strength Industrial Wastewaters," Theor. Appl. Chem. Eng., 13(2), 1783-1786 (2007).
  28. Chang, M. B., Lee, H. M., Wu, F., and Lai, C. R., "Simultaneous Removal of Nitrogen Oxide/Nitrogen Dioxide/Sulfur Dioxide from Gas Streams by Combined Plasma Scrubbing Technology," J. Air Waste Manage. Assoc., 54(8), 941-949 (2004). https://doi.org/10.1080/10473289.2004.10470965
  29. Cha, H. S., "Present State and Future Prospect for Microbubble Technology," Bulletin of Food Technology, 22(3), 544-552 (2009).
  30. Takahashi, M., Chiba, K., and Li, P., "Free-Radical Generation from Collapsing Microbubbles in the Absence of a Dynamic stimulus," J. Phys. Chem. B, 111(6), 1343-1347 (2007). https://doi.org/10.1021/jp0669254
  31. Shoji, T., Li, L., Abe, Y., Ogata, M., Ishimoto, Y., Gonda, R., Mashino, T., Mochizuki, M., Uemoto, M., and Miyata, N., "DMPO-OH Radical Formation from 5, 5-Dimethyl-1-pyrroline N-Oxide (DMPO) in Hot Water," Anal. Sci., 23(2), 219-221 (2007). https://doi.org/10.2116/analsci.23.219
  32. Adewuyi, Y. G., Khan, M. A., and Sakyi, N. Y., "Kinetics and Modeling of the Removal of Nitric Oxide by Aqueous Sodium Persulfate Simultaneously Activated by Temperature and Fe2+," Ind. Eng. Chem. Res., 53(2), 828-839 (2014). https://doi.org/10.1021/ie402801b
  33. Lin, T. J., Tsuchiya, K., and Fan, L. S., "Bubble Flow Characteristics in Bubble Columns at Elevated Pressure and Temperature," AIChE J., 44(3), 545-560 (1998). https://doi.org/10.1002/aic.690440306
  34. Wilhelm, E., Battino, R., and Wilcock, R. J., "Low-Pressure Solubility of Gases in Liquid Water," Chem. Rev., 77(2), 219-262 (1977). https://doi.org/10.1021/cr60306a003
  35. Xiao, Z., Li, D., Zhu, Q., and Sun, Z., "Simultaneous Removal of NO and SO2 through a New Wet Recycling Oxidation-reduction Process Utilizing Micro-nano Bubble Gas-liquid Dispersion System Based on Na2SO3," Fuel (Lond), 263, 116682 (2020). https://doi.org/10.1016/j.fuel.2019.116682
  36. Takeuchi, H., Ando, M., and Kizawa, N., "Absorption of Nitrogen Oxides in Aqueous Sodium Sulfite and Bisulfite Solutions," Ind. Eng. Chem. Process Des. Dev., 16(3), 303-308 (1977). https://doi.org/10.1021/i260063a01
  37. Weisweiler, W., and Blumhofer, R., "Absorption of NOX in Aqueous Solutions of Na2SO3/NaHSO3 and Simultaneous Absorption of NOX and SO2 in NaOH (by means of a double stirred cell)," Ger. Chem. Eng, 4, 241-247 (1984).
  38. Xiong, Y., Zeng, Y., Cai, W., Zhang, S., Ding, J., and Zhong, Q., "Experimental Study on Reaction Characteristics of NO in (NH4)2SO3 Solution," J. Ind. Eng. Chem., 65, 380-386 (2018). https://doi.org/10.1016/j.jiec.2018.05.010
  39. Zhao, Y., Guo, T., Chen, Z., and Du, Y., "Simultaneous Removal of SO2 and NO Using M/NaClO2 Complex Absorbent," Chem. Eng. J., 160(1), 42-47 (2010). https://doi.org/10.1016/j.cej.2010.02.060
  40. Brogren, C., Karlsson, H. T., and Bjerle, I., "Absorption of NO in an Aqueous Solution of NaClO2," Chem. Eng. Technol., 21(1), 61-70 (1998). https://doi.org/10.1002/1521-4125(199801)21:1<61::AID-CEAT61>3.0.CO;2-0