DOI QR코드

DOI QR Code

An Optimization Study on a Low-temperature De-NOx Catalyst Coated on Metallic Monolith for Steel Plant Applications

제철소 적용을 위한 저온형 금속지지체 탈질 코팅촉매 최적화 연구

  • 이철호 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 최재형 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 김명수 (아모그린텍) ;
  • 서병한 (대영씨엔이(주)) ;
  • 강철희 (대영씨엔이(주)) ;
  • 임동하 (한국생산기술연구원 친환경재료공정연구그룹)
  • Received : 2021.11.16
  • Accepted : 2021.12.07
  • Published : 2021.12.31

Abstract

With the recent reinforcement of emission standards, it is necessary to make efforts to reduce NOx from air pollutant-emitting workplaces. The NOx reduction method mainly used in industrial facilities is selective catalytic reduction (SCR), and the most commercial SCR catalyst is the ceramic honeycomb catalyst. This study was carried out to reduce the NOx emitted from steel plants by applying De-NOx catalyst coated on metallic monolith. The De-NOx catalyst was synthesized through the optimized coating technique, and the coated catalyst was uniformly and strongly adhered onto the surface of the metallic monolith according to the air jet erosion and bending test. Due to the good thermal conductivity of metallic monolith, the De-NOx catalyst coated on metallic monolith showed good De-NOx efficiency at low temperatures (200 ~ 250 ℃). In addition, the optimal amount of catalyst coating on the metallic monolith surface was confirmed for the design of an economical catalyst. Based on these results, the De-NOx catalyst of commercial grade size was tested in a semi-pilot De-NOx performance facility under a simulated gas similar to the exhaust gas emitted from a steel plant. Even at a low temperature (200 ℃), it showed excellent performance satisfying the emission standard (less than 60 ppm). Therefore, the De-NOx catalyst coated metallic monolith has good physical and chemical properties and showed a good De-NOx efficiency even with the minimum amount of catalyst. Additionally, it was possible to compact and downsize the SCR reactor through the application of a high-density cell. Therefore, we suggest that the proposed De-NOx catalyst coated metallic monolith may be a good alternative De-NOx catalyst for industrial uses such as steel plants, thermal power plants, incineration plants ships, and construction machinery.

최근 사업장 질소산화물(NOx) 배출허용기준 강화(2019년 1월 적용)에 따라 다량 배출사업장에서 배출되는 질소산화물을 배출허용기준 이하로 만족하기 위한 노력이 필요하다. 대표적인 질소산화물 저감 방법으로 선택적 촉매 환원법(selective catalytic reduction, SCR)을 주로 사용하고 있으며, 일반적으로 세라믹 허니컴(ceramic honeycomb) 촉매를 사용하고 있다. 본 연구에서는 높은 열적 안정성과 기계적 강도를 가지는 금속지지체 탈질 코팅촉매를 적용하여 제철소에서 배출되는 질소산화물를 저감하기 위한 연구를 수행하였다. 금속지지체 코팅촉매는 최적화된 촉매슬러리(catalyst slurry) 코팅방법을 통해 제조하였고, 내마모 시험과 굽힙 시험을 통해 코팅된 촉매가 균일하고 강건하게 부착되어 있음을 확인하였다. 금속지지체가 가지는 우수한 열전도 특성으로 인해 저온영역(200 ~ 250 ℃)에서 세라믹 허니컴 촉매보다도 우수한 탈질효율을 보였다. 또한 경제적인 촉매 설계를 위해 금속지지체 표면 상에 코팅되는 촉매의 최적 코팅량을 확인하였다. 이러한 연구결과를 바탕으로 제철소 배기가스 모사환경에서 상용급 금속지지체 코팅촉매에 대한 준파일럿 탈질 성능평가를 수행하였고, 저온영역(220 ℃)에서도 배출허용기준치(60 ppm 이하)을 만족하는 우수한 성능을 나타내었다. 따라서 물리화학적 특성이 우수한 금속지지체 코팅촉매가 최소량의 촉매 사용으로도 우수한 탈질 성능을 나타내었으며, 넓은 비표면적을 가지는 고밀도 금속지지체 적용을 통해 배연 탈질 촉매 반응기의 콤팩트화 및 소형화가 가능하였다. 이러한 결과를 바탕으로, 본 연구에서 사용된 금속지지체 코팅촉매는 제철소뿐만 아니라 화력발전, 소각장, 선박, 건설기계 등 다양한 산업 분야에 적용할 수 있는 새로운 형태의 촉매가 될 것이다.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 제조분야미세먼지감축을위한 공정맞춤형실용화기술개발 사업(과제번호 : 20005690)으로 수행하였음.

References

  1. Lim, D.-H., Choi, J. H., and Lee, C.-H., "Industrial-customized Low-temperature De-NOx Technology," News Inf. Chem. Eng., 38(3), 296-302 (2020).
  2. Chae, T., "Study on Operating Characteristics for NOx Reduction in Ultra Low NOx Burner Combustion Using 80 kW Furnace," Clean Technol., 26(3), 211-220 (2020). https://doi.org/10.7464/KSCT.2020.26.3.211
  3. Roy, S., Hegde, M. S., and Madras, G., "Catalysis for NOx Abatement," Appl. Energy, 86(11), 2283-2297 (2009). https://doi.org/10.1016/j.apenergy.2009.03.022
  4. Jeong, H., Kim, T., Im, E., and Lim, D.-H., "Optimum Synthesis Conditions of Coating Slurry for Metallic Structured De-NOx Catalyst by Coating Process on Ship Exhaust Gas," Clean Technol., 24(2), 127-134 (2018). https://doi.org/10.7464/KSCT.2018.24.2.127
  5. Jeong, H., Jung, K., Hwang, S., and Lim, D.-H., "A New Feature of Metallic Foam Structured Catalyst Prepared by Slurry Coating for Selective Catalytic Reduction of Nitrogen Oxide with Ammonia," Nanosci. Nanotechnol. Lett., 10(9), 1257-1261 (2018). https://doi.org/10.1166/nnl.2018.2762
  6. Pratt, A. S., and Cairns, J. A., "Noble Metal Catalysts on Metallic Substrates," Platin Metals Rev., 21(3), 74-83 (1977).
  7. Almeida, L. C., Echave, F. J., Sanz, O., Centeno, M. A., Arzamendi, G., Gandia, L. M., Sousa-Aguiar, E. F., Odriozola, J. A., and Montes, M., "Fischer-Tropsch Synthesis in Microchannels," Chem. Eng. J., 167(2-3), 536-544 (2011). https://doi.org/10.1016/j.cej.2010.09.091
  8. Montebelli, A., Visconti, C. G., Groppi, G., Tronconi, E., Cristiani, C., Ferreira, C., and Kohler, S., "Methods for the Catalytic Activation of Metallic Structured Substrates," Catal. Sci. Technol., 4(9), 2846-2870 (2014). https://doi.org/10.1039/C4CY00179F
  9. Ciambelli, P., Palma, V., and Palo, E., "Comparison of Ceramic Honeycomb Monolith and Foam as Ni Catalyst Carrier for Methane Autothermal Reforming," Catal. Today, 155(1-2), 92-100 (2010). https://doi.org/10.1016/j.cattod.2009.01.021
  10. Giani, L., Groppi, G., and Tronconi, E., "Mass-Transfer Characterization of Metallic Foams as Supports for Structured Catalysts," Ind. Eng. Chem. Res., 44(14), 4993-5002 (2005). https://doi.org/10.1021/ie0490886
  11. Montebelli, A., Visconti, C. G., Groppi, G., Tronconi, E., Kohler, S., Venvik, H. J., and Myrstad, R., "Washcoating and Chemical Testing of a Commercial Cu/ZnO/Al2O3 Catalyst for the Methanol Synthesis over Copper Open-Cell Foams," Appl. Catal., A, 481, 96-103 (2014). https://doi.org/10.1016/j.apcata.2014.05.005
  12. Katheria, S., Deo, G., and Kunzru, D., "Washcoating of Ni/MgAl2O4 Catalyst on FeCralloy Monoliths for Steam Reforming of Methane," Energy Fuels, 31(3), 3143-3153 (2017). https://doi.org/10.1021/acs.energyfuels.6b03423
  13. Truter, L. A., Makgwane, P. R., Zeelie, B., Roberts, S., Bohringer, W., and Fletcher, J. C. Q., "Washcoating of H-ZSM-5 Zeolite Onto Steel Microreactor Plates - Filling the Void Space Between Zeolite Crystallite Agglomerates Particles," Chem. Eng. J., 257, 148-158 (2014). https://doi.org/10.1016/j.cej.2014.07.047
  14. Kryca, J., Iwaniszyn, M., Piatek, M., Jodlowski, P. J., Jedrzejezyk, R., Pedrys, R., Wrobel, A., Lojewska, J., and Kolodziej, A., "Structured foam Reactor with CuSSZ-13 Catalyst for SCR of NOx with Ammonia," Top Catal., 59(10), 887-894 (2016). https://doi.org/10.1007/s11244-016-0564-4
  15. Liu, Y., Xu, J., Li, H., Cai, S., Hu, H., Fang, C., Shi, L., and Zhang, D., "Rational Design and in situ Fabrication of MnO2@NiCo2O4 Nanowire Arrays on Ni foam as High-performance Monolith de-NOx Catalysts," J. Mater. Chem. A, 3(21), 11543-11553 (2015). https://doi.org/10.1039/C5TA01212K
  16. Park, H.-C., Choi, H.-S., and Choi, Y.-S., "Numerical Study on the Erosion Characteristics of SCR Catalyst Dust by Varying its Geometrical Configuration," J. Comput. Fluids Eng., 16(2), 66-74 (2011).