• Title/Summary/Keyword: Sulfur oxide

Search Result 159, Processing Time 0.033 seconds

Deposition of Functional Organic and Inorganic Layer on the Cathode for the Improved Electrochemical Performance of Li-S Battery

  • Sohn, Hiesang
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.483-489
    • /
    • 2017
  • The loss of the sulfur cathode material through dissolution of the polysulfide into electrolyte causes a significant capacity reduction of the lithium-sulfur cell during the charge-discharge reaction, thereby debilitating the electrochemical performance of the cell. We addressed this problem by using a chemical and physical approach called reduction of polysulfide dissolution through direct coating functional inorganic (graphene oxide) or organic layer (polyethylene oxide) on electrode, since the deposition of external functional layer can chemically interact with polysulfide and physically prevent the leakage of lithium polysulfide out of the electrode. Through this approach, we obtained a composite electrode for a lithium-sulfur battery (sulfur: 60%) coated with uniform and thin external functional layers where the thin external layer was coated on the electrode by solution coating and drying by a subsequent heat treatment at low temperature (${\sim}80^{\circ}C$). The external functional layer, such as inorganic or organic layer, not only alleviates the dissolution of the polysulfide electrolyte during the charging/discharging through physical layer formation, but also makes a chemical interaction between the polysulfide and the functional layer. As-formed lithium-sulfur battery exhibits stable cycling electrochemical performance during charging and discharging at a reversible capacity of 700~1187 mAh/g at 0.1 C (1 C = 1675 mA/g) for 30 cycles or more.

Effects of SO2 Mixture in Inlet Air on Combustion and Exhaust Emission Characteristic in diesel engine (디젤엔진에 있어서 흡기 중에 SO2혼입이 연소 및 배기배출물 특성에 미치는 영향)

  • Yoo, Dong-Hoon
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.64-69
    • /
    • 2015
  • Marine diesel engines with high thermal efficiency and fuel diversity used for propulsive power have been taking charge of important position on marine transport. However, marine environment has recently focused on emissions such as nitrogen oxide and sulfur oxide which is generated from combustion of low grade fuels. EGR(Exhaust gas recirculation) system is one of effective methods to reduce the nitrogen oxide emission from marine diesel engines. In general, it is considered that recirculating gas influences fuel combustion and emissions in diesel engines. However, along with positive effects of EGR, the EGR system using fuels of including high sulfur concentration should be considered about re-combustion and activation of sulfur dioxide in recirculating gas. Therefore, in experimental study, an author investigates effects of sulfur dioxide mixture concentration in intake air on combustion and exhaust emission characteristics in a direct injection diesel engine. In results, change of sulfur dioxide concentrations in intake air had negligible impact on combustion chamber pressure, rate of heat release and emissions compared with effects of oxygen decreasing and carbon dioxide increasing of EGR.

Density and Absorption Properties of the Magnesium Oxide matrix Including the Modified Sulfur According to the Addition Ratio of the Wood Powder and Pearlite (개질유황을 포함한 산화마그네슘 경화체의 목분과 펄라이트 첨가율에 따른 밀도 및 흡수율 특성)

  • Kim, Heon-Tae;Lee, Yong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.156-157
    • /
    • 2015
  • Recently, the trend for structure is being changed from wall construction to rhamen construction. rhgamen construction reduces floor noise and selfweight in structures. The amount of lightweight panels used in rhamen construction is also increasing. Also, Worldwide refinery industry is a large amount of sulfur is produced by develrop ment. Sulfur is resistant to freezing and thawing. Terefore, this study focuses on the density and absorption of magnesium oxide matrix that contains wood powder and pearlite to replace lightweight panel for rhamen construction. Adding pearlite 15% has the lowest density but, it has the highest absorption.

  • PDF

Water Absorption Ratio and Flexural Strenght of the Magnesium Oxide Light Weight Matrix According to the Powdery Modified Sulfur Addition Ratio (분말형 개질유황 첨가율에 따른 산화마그네슘 경량 경화체의 흡수율 및 휨강도 특성)

  • Yoo, Yong-Jin;Jeong, Byeong-Yeol;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.114-115
    • /
    • 2014
  • Recently, the construction structure repeats the brilliant development including the shper high rising, high functionalization, environmental friendliness, conversion to ubiquitous, and etc. upon with the construction industry development and it is continually soothed. Meanwhile, as to the construction structure of the modern society, the research for corresponding to the box-frame construction way where the response to the diversity of the life of the occupant is difficult is needed. Thus, the lightweight of the structure is the important factor in order to secure the functionality. Therefore, this research tries to study the water absorption ratio and flexural strenght of the magnesium oxide light weight matrix according to the powdery modified sulfur addition ratio.

  • PDF

Study on the Suppression of Sulfur Trioxide in High Sulfur Boiler (고유황 보일러에서의 Sulfur Trioxide의 억제에 대한 연구)

  • Choi, Sung-Bu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.455-463
    • /
    • 2011
  • The average sulfur content of crude oil is 2.2%. Coal is about 0.3 to 4.0 percent of the sulfur gases or particles being discharged into the atmosphere through the chimney as 1 to 2% $SO_3$(Sulfur trioxide) and about 95% of the $SO_2$ is reported. $SO_3$ gas, which has many different causes of, as the combustion of sulfur containing fuel during the air due to the excess $SO_2$ gas is oxidized to $SO_3$ gas. Sulfur trioxide emitted from high sulfur heavy oil fired boiler caused white plume in stack and high temperature and cold end corrosion of facilities. So, in order to control sulfur trioxide concentration of Fuel gas in boiler, various of additives are used in other foreign. They are injected to Fuel Oil and consumed in boiler and reduce ash and the conversion rate of sulfur trioxide. In domestic, MgO compounds are used as additives but the total volume of them are made from other foreign company. In this study, MgO compounds were developed with liquid MgO compounds and field application was accomplished. The effect of newly developed chemicals and process were nearly equal to foreign products. In Consequent, the chemicals and process produced by newly developed technology can be substituted for foreign products and reduce the cost of plant operation.

Nitrogen oxide (NOX) and Sulfur Oxide (SOX) Removal Capacities of Textile FabricsCoated with Nano-pore Materials (나노 공극소재로 코팅된 모헤어의 질소산화물(NOX) 및 황산화물(SOX) 제거 성능평가)

  • Lee, Jae-Uk;Yang, Keun-Hyeok;Mun, Ju-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.157-158
    • /
    • 2020
  • The present study examined the effectiveness of textile fabrics coated with nano-pore materials on removing the nitrogen oxide (NOX) and sulfur oxide (SOX) in the atmospheric environment. The tested approach is favorable for absorbing NOX and SOX, even under the washing condition.

  • PDF

Variation of Liquid to Gas Ratio and Sulfur Oxide Emission Concentrations in Desulfurization Absorber with Coal-fired Thermal Power Plant Outputs (석탄화력 발전설비의 출력에 따른 탈황 흡수탑 액기비와 황산화물 배출농도 변화에 대한 연구)

  • Kim, Kee-Yeong;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.14 no.4
    • /
    • pp.39-47
    • /
    • 2018
  • In this research, when the output of the standard coal-fired thermal power plant operating continuously at the rated output of 500 MW is changed to operate at 300 to 500 MW, the amount of sulfur oxide produced and the amount of sulfur oxide in the absorption tower of desulfurization equipment and proposed an extra liquid to gas ratio improvement inversely proportional to the output. In order to calibrate the combustion efficiency at low power, the ratio of sulfur oxides relative to the amount of combustion gas is increased as the excess air ratio is increased. When the concentration of sulfur oxide at the inlet of the desulfurization absorber was changed from 300 to 500 ppm along with the output fluctuation. The liquid to gas ratio of limestone slurry and combustion gas was changed from 10.99 to 16.27. Therefore, if the concentration of sulfur oxides with output of 300 MW is x, The following correlation equation is recommended for the minimum required flow rate of slurry for the reduction of surplus energy due to the increase of the liquid weight at low load. $y1[m^3/sec]=0.11x+3.74$

  • PDF

Sulfur Poisoning of Ni Anode as a Function of Operating Conditions in Solid Oxide Fuel Cells (고체산화물 연료전지의 운전 조건에 따른 니켈 전극 황 피독 현상)

  • Lee, Ho Seong;Lee, Hyun Mi;Lim, Hyung-Tae
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.893-899
    • /
    • 2018
  • In the present study, we investigated the sulfur poisoning of the Ni anode in solid oxide fuel cells (SOFCs) as a function of operating conditions. Anode supported cells were fabricated, and sulfur poising tests were conducted as a function of current density, $H_2S$ concentration and humidity in the anode gas. The voltage drop was significant under the higher current density (${\sim}714mA/cm^2$) condition, while it was much reduced under the lower current density (${\sim}389mA/cm^2$) condition, at 100 ppm of $H_2S$. A secondary voltage drop, which occurred only at the high current density, was attributed to Ni oxidation in the anode. Thus, operation at high current density with high $H_2S$ concentration may lead to permanent deterioration in the anode. The effect of water content (10%) on the sulfur poisoning was also investigated through a constant current test (${\sim}500mA/cm^2$) at 10 ppm of $H_2S$. The cell operating with 10% wet anode gas showed a much smaller initial voltage drop, in comparison with a dry anode gas. The present study indicates that operating conditions, such as gas humidity and current density, should be carefully taken into account, especially when fuel cells are operated with $H_2S$ containing fuel.

Study on urea precursor effect on the electroactivities of nitrogen-doped graphene nanosheets electrodes for lithium cells

  • Kim, Ki-Yong;Jung, Yongju;Kim, Seok
    • Carbon letters
    • /
    • v.19
    • /
    • pp.40-46
    • /
    • 2016
  • Nitrogen-atom doped graphene oxide was considered to prevent the dissolution of polysulfide and to guarantee the enhanced redox reaction of sulfur for good cycle performance of lithium sulfur cells. In this study, we used urea as a nitrogen source due to its low cost and easy preparation. To find the optimum urea content, we tested three different ratios of urea to graphene oxide. The morphology of the composites was examined by field emission scanning electron microscope. Functional groups and bonding characterization were measured by X-ray photoelectron spectroscopy. Electrochemical properties were characterized by cyclic voltammetry in an organic electrolyte solution. Compared with thermally reduced graphene/sulfur (S) composite, nitrogen-doped graphene/S composites showed higher electroactivity and more stable capacity retention.

The Treatment of Flue SO$_2$ Gas by Cu Powder (I) (구리 분말을 이용한 $SO_2$ 배기가스의 처리(I))

  • 정국삼;김학성;신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 1986
  • To remove sulfur dioxide from flue gas by the method of metal oxide, copper powder of average diameter $2.4\mu\textrm{m}$and $51\mu\textrm{m}$ were used in a fixed bed reactor over a, temperature range of $300^{\circ}C-500^{\circ}C$. Copper oxide reacts with sulfur dioxide producing cupric sulfate and it can be regenerated from the latter by using hydrogen or methane. Experimental results showed that the reaction rate was increased by the increase of reaction temperature in the range of $300^{\circ}C-422^{\circ}C$ and the removal efficiency of sulfur dioxide was high in case of small size copper particle. However the removal efficiency was decreased at higher temperature due to decomposition of cupric sulfate. The rate controlling step of this reaction was chemical reaction and deactivating catalysts model can be applied to this reaction. The rate constants for this reaction and deactivation are as follows : k=8,367exp(-10,298/RT) Kd=2.23exp(-8,485/RT)

  • PDF