DOI QR코드

DOI QR Code

Monitoring of plant induced electrical signal of broccoli (Brassica oleracea var. italica) under changing light and CO2 conditions

광 및 CO2 변화 조건에서 브로콜리(Brassica oleracea var. italica)의 전기적 신호 모니터링

  • Park, Jin Hee (Department of Agricultural Chemistry, Chungbuk University) ;
  • Kim, Han-Na (Department of Agricultural Chemistry, Chungbuk University)
  • Received : 2021.09.07
  • Accepted : 2021.09.29
  • Published : 2021.12.31

Abstract

Changing environmental conditions can affect plant growth by influencing water and nutrient transport and photosynthesis. Plant physiological responses under changing environmental conditions can be non-destructively monitored using electrodes as plant induced electrical signal (PIES). Objective of the study was to monitor PIES in response to increased CO2 and decreased photosynthetic photon flux density (PPFD). The PIES increased during day time when transpiration and photosynthesis occurs and monitored CO2 concentration was negatively correlated to the PIES. Enhanced CO2 concentration slightly reduced PIES, but the effect of increased CO2 was limited by light intensity. The effect of reduced PPFD was not appeared immediately because water and nutrient transport was not promptly affected by the light. The study was conducted to evaluate short-term effect of increasing CO2 and decreasing PPFD, hence proline content and chlorophyll fluorescence was not significantly affected by the conditions.

환경 조건의 변화는 식물의 물과 양분 흡수 및 광합성 정도를 변화시켜 결과적으로 식물 생육에 영향을 미친다. 변화하는 환경 조건에서 식물의 생리적 반응은 식물 줄기에 전극을 삽입해 식물유도 전기신호(PIES)로 비파괴적으로 모니터링할 수 있다. 본 연구의 목적은 CO2 증가와 광합성 광량자속밀도 PPFD 감소에 따른 식물의 반응으로 PIES를 모니터링하는 것이다. PIES는 증산과 광합성이 일어나는 낮에 증가하였고 식물 생육 기간 동안 모니터링한 CO2 농도는 PIES와 음의 상관관계를 보였다. CO2 농도 증가는 PIES를 약간 감소시켰으나 PIES에 큰 영향을 미치지 않았으며 이는 CO2 증가의 효과가 낮은 PPFD에 의해 제한되었기 때문으로 판단된다. PPFD 감소의 효과는 물과 양분 흡수가 광에 의해 즉각적으로 영향을 받지 않았기 때문에 즉시 나타나지는 않았다. 본 연구는 CO2 증가와 PPFD 감소에 의한 식물의 단기적 반응을 평가하고자 한 것이며 프롤린 함량 및 엽록소 형광은 환경 변화에 따라 유의하게 변화하지는 않았다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 연구사업(세부과제번호: PJ015050012021)의 지원에 의해 이루어진 것임.

References

  1. Fan XX, Xu ZG, Liu XY, Tang CM, Wang LW, Han XL (2013) Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci Hortic 153: 50-55. doi: 10.1016/j.scienta.2013.01.017
  2. Gechev T, Willekens H, Van Montagu M, Inze D, Van Camp WIM, Toneva V, Minkov I (2003) Different responses of tobacco antioxidant enzymes to light and chilling stress. J Plant Physiol 160(5): 509-515. doi: 10.1078/0176-1617-00753
  3. Avola G, Cavallaro V, Patane C, Riggi E (2008) Gas exchange and photosynthetic water use efficiency in response to light, CO2 concentration and temperature in Vicia faba. J Plant Physiol 165(8): 796-804. doi: 10.1016/j.jplph.2007.09.004
  4. Naing AH, Jeon SM, Park JS, Kim CK (2016) Combined effects of supplementary light and CO2 on rose growth and the production of good quality cut flowers. Can J Plant Sci 96(3): 503-510. doi: 10.1139/cjps2015-0304
  5. Makino A, Mae T (1999) Photosynthesis and plant growth at elevated levels of CO2. Plant Cell Physiol 40(10): 999-1006. doi: 10.1093/oxfordjournals.pcp.a029493
  6. Park HJ, Park JH, Park KS, Ahn TI, Son JE (2018) Nondestructive measurement of paprika (Capsicum annuum L.) internal electrical conductivity and its relation to environmental factors. hortic Sci Technol 36(5): 691-701. doi: 10.12972/kjhst.20180069
  7. Cha SJ, Park HJ, Lee JK, Kwon SJ, Jee HK, Baek H, Park JH (2020) Multi-sensor monitoring for temperature stress evaluation of broccoli (Brassica oleracea var. italica). J Appl Biol Chem 63(4): 347-355. doi: 10.3839/jabc.2020.046
  8. Maclachlan S, Zalik S (1963) Plastid structure, chlorophyll concentration, and free amino acid composition of a chlorophyll mutant of barley. Can J Bot 41(7): 1053-1062. doi: 10.1139/b63-088
  9. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1): 205-207. doi: 10.1007/BF00018060
  10. Wheeler RM (1992) Gas-exchange measurements using a large, closed plant growth chamber. HortScience 27(7): 777-780. doi: 10.21273/HORTSCI.27.7.777
  11. Terabayashi S, Takii K, Namiki T (1991) Variation in diurnal uptake of water and nutrients by tomato plants of different growth stages grown in water culture. J Jpn Soc Hortic Sci 59(4): 751-755. doi: 10.2503/jjshs.59.751
  12. Jayawardena DM, Heckathorn SA, Bista DR, Mishra S, Boldt JK, Krause CR (2017) Elevated CO2 plus chronic warming reduce nitrogen uptake and levels or activities of nitrogen-uptake and-assimilatory proteins in tomato roots. Physiol Plant 159(3): 354-365. doi: 10.1111/ppl.12532
  13. Wullschleger SD, Tschaplinski TJ, Norby RJ (2002) Plant water relations at elevated CO2-implications for water-limited environments. Plant Cell Environ 25(2): 319-331. doi: 10.1046/j.1365-3040.2002.00796.x
  14. Wang S, Zhang Y, Ju W, Chen JM, Ciais P, Cescatti A, Penuelas J (2020) Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370(6522): 1295-1300. doi: 10.1126/science.abb7772
  15. Baligar VC, Elson MK, He Z, Li Y, Paiva ADQ, Almeida AAF, Ahnert D (2021) Impact of Ambient and Elevated [CO2] in Low Light Levels on Growth, Physiology and Nutrient Uptake of Tropical Perennial Legume Cover Crops. Plants 10(2): 193 https://doi.org/10.3390/plants10020193
  16. Song H, Li Y, Xu X, Zhang J, Zheng S, Hou L, Xing G, Li M (2020) Analysis of genes related to chlorophyll metabolism under elevated CO2 in cucumber (Cucumis sativus L.). Sci Hortic 261, 108988 doi: 10.1016/j.scienta.2019.108988
  17. Cave G, Tolley LC, Strain BR (1981). Effect of carbon dioxide enrichment on chlorophyll content, starch content and starch grain structure in Trifolium subterraneum leaves. Physiol Plant 51(2), 171-174. doi: 10.1111/j.1399-3054.1981.tb02694.x
  18. Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2) 89-97. doi: 10.1016/j.tplants.2009.11.009
  19. Baligar VC, Fageria NK, Paiva AQ, Silveira A, Pomella AWV, Machado RCR (2006) Light intensity effects on growth and micronutrient uptake by tropical legume cover crops. J Plant Nutr 29(11): 1959-1974. doi: 10.1080/01904160600927633
  20. Lawson T, Vialet-Chabrand S (2019) Speedy stomata, photosynthesis and plant water use efficiency. New Phytol 221(1): 93-98. doi: 10.1111/nph.15330
  21. Dai Y, Shen Z, Liu Y, Wang L, Hannaway D, Lu H (2009) Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environ Exp Bot 65(2-3): 177-182. doi: 10.1016/j.envexpbot.2008.12.008