DOI QR코드

DOI QR Code

다양한 증분형 아날로그 디지털 변환기의 설계 방정식 유도

Derivation of design equations for various incremental delta sigma analog to digital converters

  • Jung, Youngho (Department of Electronic and Electrical Engineering, Daegu University)
  • 투고 : 2021.09.02
  • 심사 : 2021.10.05
  • 발행 : 2021.11.30

초록

증분형 아날로그 디지털 변환기는 전통적인 델타 시그마 아날로그 디지털 컨버터와 달리 리셋 동작을 통한 입력과 출력의 1:1 매핑이 가능하며 이는 멀티플렉싱에 매우 용이하게 사용될 수 있다. 또한, 증분형 아날로그 디지털 변화기는 전통적인 델타 시그마 변환기에 비해 간단한 디지털 필터 설계가 가능하다. 따라서, 본 논문에서는 아날로그 디지털 컨버터 설계에 기본이 되는 딜레이가 있는 적분기와 딜레이가 없는 적분기의 시간 영역에서의 분석을 시작으로 2차 입력 피드 포워드, 확장된 카운팅, 2+1 매쉬, 2+2 매쉬 구조를 갖는 증분형 아날로그 디지털 변환기의 설계 방정식을 유도한다. 이를 통해 설계 이전에 증분형 아날로그 디지털 변환기의 성능을 예측할 수 있을 뿐만 아니라 각각의 아날로그 디지털 변화기에 적합한 디지털 필터를 설계할 수 있다. 또한, 아날로그 디지털 변환기의 정확도를 향상 시키기 위한 확장된 카운팅, MASH의 설계 기술들을 제안하였다.

Unlike traditional delta-sigma analog-to-digital converters, incremental analog-to-digital converters enable 1:1 mapping of input and output through a reset operation, which can be used very easily for multiplexing. Incremental analog-to-digital converters also allow for simpler digital filter designs compared to traditional delta-sigma converters. Therefore, starting with analysis in the time domain of the delayed integrator and non-delayed integrator, which are the basic blocks of analog-to-digital converter design, the design equations of a second-order input feed-forward, extended counting, 2+1 MASH (Multi-stAge-noise-SHaping), 2+2 MASH incremental analog-to-digital converter are derived in this paper. This allows not only prediction of the performance of the incremental analog-to-digital converter before design, but also the design of a digital filter suitable for each analog-to-digital converter. In addition, extended counting and MASH design techniques were proposed to improve the accuracy of analog-to-digital converters.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2019R1F1A1056151)

참고문헌

  1. Y. Yang, Q. Don, W. Jung, Y. Zhang, M. Choi, D. Blaauw, and D. Shlvester, "A 0.6nJ -0.22/+0.19oC Inaccuracy Temperature Sensor Using Exponential Subthreshold Oscillation Dependence," IEEE International Solid-State Circuits Conference(ISSCC), San Francisco, CA, USA, pp. 160-161, 2017.
  2. Y. Zhang, C. H. Chen, T. He, K. Sobue, K. Hamashita, and G. C. Temes, "A two-capacitor SAR-assisted multi-step incremental ADC with a single amplifier achieving 96.6 dB SNDR over 1.2 kHz BW," IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, pp. 1-4, 2017.
  3. C. H. Chen, Y. Zhang, and G. C. Temes, " History, present state-of-art and future of incremental ADC," European Solid-State Circuits Conference (ESSCIRC), Lausanne, Switzerland, pp. 83-86, 2016
  4. B. Oh, K. Park, and J. Kim, "A Triple-Mode Peformance-Optimized Refonfigurable Incremental ADC for Smart Sensor Applications," IEEE Access, vol. 7, pp. 19013-19023, Jan. 2019. https://doi.org/10.1109/access.2019.2896756
  5. J. De Maeyer, P. Rombouts, and L. Weyten, "A doublesampling extended-counting ADC," IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 411-418, Mar. 2004. https://doi.org/10.1109/JSSC.2003.822903
  6. P. Rombouts, W. De Wilde, and L. Weyten, "A 13.5-b 1.2-V micro power extended counting A/D converter," IEEE J. Solid-State Circuits, vol. 36, no. 2, pp. 176-183, Feb. 2001. https://doi.org/10.1109/4.902758
  7. A. Agah, K. Vleugels, P. B. Griffin, M. Ronaghi, J. D. Plummer, and B. A. Wooley, "A High-Resolution Low-Power ΔΣ ADC With Extended Range for Biosensor Arrays," IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1099-1110, Jun. 2010. https://doi.org/10.1109/JSSC.2010.2048493