과제정보
본 연구는 교육부의 재원으로 한국기초과학지원연구원 국가연구시설장비진흥센터의 지원을 받은 기초과학연구역량강화사업 핵심연구지원센터 조성 지원 과제에서 에너지 융복합 전문핵심 연구지원센터를 조성하여(2019R1A6C1010024) 수행된 연구결과임.
참고문헌
- H. Sun, K. H. Li, C. G. Torres Castanedo, S. Okur, G. S. Tompa, T. Salagaj, S. Lopatin, A. Genovese, X. Li,, "HCl Flow-Induced Phase Change of α-, β-, and ϵ-Ga2O3 Films Grown by MOCVD, Cryst", Growth Des., 18, 2370-2376 (2018). https://doi.org/10.1021/acs.cgd.7b01791
- D. Shinohara, S. Fujita, "Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition", Jpn. J. Appl. Phys., 47, 7311-7313 (2008). https://doi.org/10.1143/JJAP.47.7311
- K. Kaneko, H. Kawanowa, H. Ito, S. Fujita, "Evaluation of Misfit Relaxation in α-Ga2O3 Epitaxial Growth on α-Al2O3 Substrate", Jpn. J. Appl. Phys., 51, 020201 (2012).
- G. Lee, R. Park, and Roy B. K. Chung, "Understanding the Electrical Property of Si-doped β-Ga2O3 via Thermal Annealing Process", J. Microelectron. Packag. Soc., 27(4), 19-24 (2020). https://doi.org/10.6117/KMEPS.2020.27.4.019
- S. J. Pearton, F. Ren, M. Tadjer, J. Kim, "Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS", J. Appl. Phys., 124 (2018).
- J. Bae, D.-W. Jeon, J.-H. Park, J. Kim, "High responsivity solar-blind metal-semiconductor-metal photodetector based on α-Ga2O3", J. Vac. Sci. Technol. A., 39, 033410 (2021). https://doi.org/10.1116/6.0000940
- P. J. Wellmann, "Power Electronic Semiconductor Materials for Automotive and Energy Saving Applications - SiC, GaN, Ga2O3, and Diamond, Zeitschrift Fur Anorg", Z Anorg Allg Chem., 643, 1312-1322 (2017). https://doi.org/10.1002/zaac.201700270
- L. K. Ping, D. D. Berhanuddin, A. K. Mondal, P. S. Menon, M. A. Mohamed, "Properties and perspectives of ultrawide bandgap Ga2O3 in optoelectronic applications", Chinese J. Phys., 73, 195-212 (2021). https://doi.org/10.1016/j.cjph.2021.06.015
- S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, M. A. Mastro, "A review of Ga2O3 materials, processing, and devices", Appl. Phys. Rev., 5 (2018).
- C. H. Lin, C. T. Lee, "Ga2O3-based solar-blind deep ultraviolet light-emitting diodes", J. Lumin., 224, 117326 (2020). https://doi.org/10.1016/j.jlumin.2020.117326
- H. Son, Y. J. Choi, S. K. Hong, J. H. Park, D. W. Jeon, "Reduction of dislocations in α-Ga2O3 epilayers grown by halide vapor-phase epitaxy on a conical frustum-patterned sapphire substrate", IUCrJ., 8, 462-467 (2021). https://doi.org/10.1107/S2052252521003389
- E. Ahmadi, Y. Oshima, "Materials issues and devices of α- And β-Ga2O3", J. Appl. Phys., 126 (2019). https://doi.org/10.1152/japplphysiol.00950.2009
- Y. Oshima, E. G. Villora, Y. Matsushita, S. Yamamoto, K. Shimamura, "Epitaxial growth of phase-pure ε-Ga2O3 by halide vapor phase epitaxy", J. Appl. Phys., 118, 2-7 (2015).
- Y. Oshima, K. Kawara, T. Shinohe, T. Hitora, M. Kasu, S. Fujita, "Epitaxial lateral overgrowth of α-Ga2O3 by halide vapor phase epitaxy", APL Mater., 7 (2019).
- A. N. Cha, S. Bang, H. Rho, H. Bae, D. W. Jeon, J. W. Ju, S. K. Hong, J. S. Ha, "Effects of nanoepitaxial lateral over-growth on growth of α-Ga2O3 by halide vapor phase epitaxy", Appl. Phys. Lett., 115, 1-6 (2019).
- C. R. K. Rao, D. C. Trivedi, "Chemical and electrochemical depositions of platinum group metals and their applications", Coord. Chem. Rev., 249, 613-631 (2005). https://doi.org/10.1016/j.ccr.2004.08.015
- S. Papadimitriou, S. Armyanov, E. Valova, A. Hubin, O. Steenhaut, E. Pavlidou, G. Kokkinidis, S. Sotiropoulos, "Methanol oxidation at Pt-Cu, Pt-Ni, and Pt-Co electrode coatings prepared by a galvanic replacement process", J. Phys. Chem. C., 114, 5217-5223 (2010). https://doi.org/10.1021/jp911568g
- H. G. Kim, H. K. Rho, A. Cha, M. J. Lee, J. S. Ha, "CNT-Ni-Fabric flexible substrate with high mechanical and electrical properties for next-generation wearable devices", J. Microelectron. Packag. Soc., 27(2), 39-44 (2020). https://doi.org/10.6117/KMEPS.2020.27.2.039
- J. Sudagar, R. Tamilarasan, U. Sanjith, R. Rajendran, R. Kumar, "Electroless Deposition of Nanolayered Metallic Coatings", Nanoscaled Film. Layers., (2017).
- N. Anzar, R. Hasan, M. Tyagi, N. Yadav, J. Narang, "Carbon nanotube - A review on Synthesis, Properties and plethora of applications in the field of biomedical science", Sensors Int., 1, 100003 (2020). https://doi.org/10.1016/j.sintl.2020.100003
- N. Karousis, N. Tagmatarchis, D. Tasis, "Current progress on the chemical modification of carbon nanotubes", Chem. Rev., 110, 5366-5397 (2010). https://doi.org/10.1021/cr100018g
- D. S. Su, S. Perathoner, G. Centi, "Nanocarbons for the development of advanced catalysts", Chem. Rev., 113, 5782-5816 (2013). https://doi.org/10.1021/cr300367d
- A. Jorio, R. Saito, 'Raman spectroscopy for carbon nanotube applications", J. Appl. Phys., 129 (2021). https://doi.org/10.1152/japplphysiol.00154.2016
- B. Scheibe, E. Borowiak-Palen, R.J. Kalenczuk, 'Oxidation and reduction of multiwalled carbon nanotubes - preparation and characterization', Mater. Charact., 61, 185-191 (2010). https://doi.org/10.1016/j.matchar.2009.11.008
- O. Guler, U. Alver, T. Varol, "Fabrication and characterization of novel layered materials produced by electroless plating and hot pressing', J. Alloys Compd., 835, 155278 (2020). https://doi.org/10.1016/j.jallcom.2020.155278
- Y. Oshima, E. G. Villora, K. Shimamura, "Halide vapor phase epitaxy of twin-free α-Ga2O3 on sapphire (0001) substrates", Appl. Phys. Express., 8 (2015).
- Y. Yao, S. Okur, L.A.M. Lyle, G.S. Tompa, T. Salagaj, N. Sbrockey, R.F. Davis, L.M. Porter, "Growth and characterization of α-, β-, and ϵ-phases of Ga2O3 using MOCVD and HVPE techniques", Mater. Res. Lett., 6, 268-275 (2018). https://doi.org/10.1080/21663831.2018.1443978
- Y. Chen, Z. Chen, J. Li, Y. Chen, C. Li, J. Zhan, T. Yu, X. Kang, F. Jiao, S. Li, G. Zhang, B. Shen, "A study of GaN nucleation and coalescence in the initial growth stages on nanoscale patterned sapphire substrates: Via MOCVD", CrystEngComm., 20, 6811-6820 (2018). https://doi.org/10.1039/C8CE01450G