References
- D. Dominguez, Finiteness and tenseness theorems for Riemannian foliations, Amer. J. Math. 120 (1998), no. 6, 1237-1276. https://doi.org/10.1353/ajm.1998.0048
- S. K. Donaldson, Two-forms on four-manifolds and elliptic equations, in Inspired by S. S. Chern, 153-172, Nankai Tracts Math., 11, World Sci. Publ., Hackensack, NJ, 2006. https://doi.org/10.1142/9789812772688_0007
- T. Draghici, T.-J. Li, and W. Zhang, Symplectic forms and cohomology decomposition of almost complex four-manifolds, Int. Math. Res. Not. IMRN 2010, no. 1, 1-17. https://doi.org/10.1093/imrn/rnp113
- A. Fino and A. Tomassini, On some cohomological properties of almost complex manifolds, J. Geom. Anal. 20 (2010), no. 1, 107-131. https://doi.org/10.1007/s12220-009-9098-3
- F. W. Kamber and P. Tondeur, Foliations and metrics, in Differential geometry (College Park, Md., 1981/1982), 103-152, Progr. Math., 32, Birkhauser Boston, Boston, MA, 1983.
- F. W. Kamber and P. Tondeur, Duality for Riemannian foliations, in Singularities, Part 1 (Arcata, Calif., 1981), 609-618, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983.
- T.-J. Li and W. Zhang, Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds, Comm. Anal. Geom. 17 (2009), no. 4, 651-683. https://doi.org/10.4310/CAG.2009.v17.n4.a4
- J. A. A. Lopez, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom. 10 (1992), no. 2, 179-194. https://doi.org/10.1007/BF00130919
- P. Tondeur, Geometry of foliations, Monographs in Mathematics, 90, Birkhauser Verlag, Basel, 1997. https://doi.org/10.1007/978-3-0348-8914-8
- J. Zhou and P. Zhu, Basic cohomology group decomposition of K-contact 5-manifolds, Results Math. 71 (2017), no. 3-4, 1023-1030. https://doi.org/10.1007/s00025-016-0559-2