DOI QR코드

DOI QR Code

NMR Spectroscopy and Mass Spectrometry of Phenylethanol Galactoside synthesized using Escherichia coli 𝛽-Galactosidase

대장균 베타-갈락토시데이즈를 이용하여 합성된 Phenylethanol Galactoside의 NMR Spectroscopy 및 Mass spectrometry

  • Lee, Hyang-Yeol (Major in Biotechnology, Korea National University of Transportation) ;
  • Jung, Kyung-Hwan (Major in Biotechnology, Korea National University of Transportation)
  • 이향렬 (한국교통대학교 생명공학전공) ;
  • 정경환 (한국교통대학교 생명공학전공)
  • Received : 2020.09.07
  • Accepted : 2020.10.29
  • Published : 2020.10.31

Abstract

To characterize the molecular structure of PhE-gal synthesized using Escherichia coli 𝛽-gal, NMR (1H- and 13C-) spectroscopy and mass spectrometry of PhE-gal were conducted. 1H NMR spectrum of PhE-gal showed multiple peaks corresponding to the galactosyl group, which is an evidence of galactosylation on 2-phenylethanol (PhE). Downfield proton peaks at 𝛿H 7.30~7.21 ppm showed the presence of aromatic protons of PhE as well as benzyl CH2 protons at 𝛿H 2.88 ppm. Up field proton peaks at 𝛿H 4.31 ppm, 4.07 ppm and multiple peaks from 𝛿H 3.86~3.38 ppm are indicative of galactocylation on PhE. 13C NMR spectrum revealed the presence of 12 carbons suggestive of PhE-gal. Among 12 carbon peaks from PhE-gal, the four peaks at 138.7, 129.0, 128.6 and 126.5 were assigned aromatic carbons in the phenyl ring. Three peaks at 129.0, 128.6 and 126.5 showed high intensities, indicating CH aromatic carbons. 13C NMR data of PhE-gal showed 6 monosaccharide peaks from galactose and 2 peaks from aliphatic chain of PhE, indicating that PhE-gal was galactosyl PhE. The mass value (sodium adduct ion of PhE-gal, m/z = 307.1181) from mass spectrometry analysis of PhE-gal, and 1H and 13C NMR spectral data were in good agreement with the expecting structure of PhE-gal. We are expecting that through future study it will eventually be able to develop a new additive with low cytotoxicity.

대장균 효소 𝛽-gal를 이용하여 합성된 phenylethanol galactoside (PhE-gal)의 분자구조를 NMR (1H-와 13C-)과 고성능 mass spectrometry를 이용하여 분석하였다. 그 결과 PhE-gal은 1H NMR에서 2-phenylethanol (PhE)에 갈락토실기가 도입되었음을 나타내는 피크가 나타났다. 방향족 고리에서 오는 𝛿H 7.30~7.21 ppm의 피크와 𝛿H 2.88 ppm에 나타난 벤질기 위치의 CH2에서 오는 피크는 PhE가 존재함을 나타낸다. 지방족 사슬 영역인 𝛿H 4.31 ppm, 4.07 ppm과 𝛿H 3.86~3.38 ppm에서 나타나는 7개의 proton 피크로부터 단당류가 도입되었음을 확인할 수 있었다. 13C NMR 스펙트럼에서 나타난 12개의 탄소 피크 중 4개의 피크는 방향족 고리인 페닐기로부터, 또한 단당류에서 기인한 6개의 탄소피크가 존재하므로 PhE에 단당이 도입되었음을 알 수 있다. PhE-gal의 분자량을 확인하기 위하여 질량분석기로 분석한 결과 m/z가 307.1181인 PhE-gal의 sodium adduct ion ([M+Na]+)이 나타나 생성물이 PhE-gal임을 알 수 있었다. 따라서 본 연구결과 E. coli 𝛽-galactosidase에 의한 촉매반응으로 PhE에 갈락토즈가 첨가된 생성물인 PhE-gal이 성공적으로 생합성 되었음을 확인하였다.

Keywords

References

  1. J. Scognamiglio, L. Jones, C. S. Letizia, A. M. Api, "Fragrance material review on phenylethyl alcohol", Food Chem. Toxicol. Vol.50, S224-S239, (2012). https://doi.org/10.1016/j.fct.2011.10.028
  2. D. Belsito, D. Bickers, M. Bruze, P. Calow, M. Dagli, A. D. Fryer, H. Greim, J. H. Hanifin, Y. Miyachi, J. H. Saurat, I. G., "A toxicologic and dermatologic assessment of aryl alkyl alcohols when used as fragrance ingredients", Food Chem. Toxicol., Vol.50, (Suppl.2), S52-S99, (2012). https://doi.org/10.1016/j.fct.2011.10.042
  3. K. J. Oritiz, J. A. Yiannias, "Contact dermatitis to cosmetics fragrances, and botanicals", Dermatol. Ther., Vol.17, No.3, pp. 264-271, (2004). https://doi.org/10.1111/j.1396-0296.2004.04027.x
  4. P. L. Scheinman, "Allergic contact dermatitis to fragrance: A review", Am. J. Contact Dermatitis, Vol.7, No.2, pp. 65-76, (1996). https://doi.org/10.1016/S1046-199X(96)90077-9
  5. A. C. de Groot, P. J. Frosch, "Adverse reactions to fragrances; A clinical review", Contact Dermatitis, Vol.36, No.2, pp. 57-86, (1997). https://doi.org/10.1111/j.1600-0536.1997.tb00418.x
  6. S. E. Lee, H. Y. Lee, K.-H. Jung, "Production of chlorphenesin galactoside by whole cells of $\beta$-galactosidase-containing Escherichia coli", J. Microbiol. Biotechnol., vol.23, No.6, pp. 826-832, (2013). https://doi.org/10.4014/jmb.1211.11009
  7. S. E. Lee, T. M. Jo, H. Y. Lee, J. Lee, K.-H. Jung, "$\beta$-Galactosidase-catalyzed synthesis of galactosyl chlorphenesin and its characterization", Appl. Biochem. Biotechnol., Vol.171, No.6, pp. 1299-1312, (2013). https://doi.org/10.1007/s12010-013-0213-3
  8. H. Y. Lee, K.-H. Jung, "Enzymatic synthesis of 2-phenoxyethanol galactoside by whole cells of $\beta$-galactosidase-containing Escherichia coli", J. Microbiol. Biotechnol., Vol.24, No.9, pp. 1254-1259, (2014). https://doi.org/10.4014/jmb.1404.04004
  9. K.-H. Jung, H. Y. Lee, "Escherichia coli $\beta$-galactosidase-catalyzed synthesis of 2-phenoxyethanol galactoside and its characterization", Bioprocess Biosyst. Eng., Vol.38, No.2, pp. 365-372, (2015). https://doi.org/10.1007/s00449-014-1276-4
  10. Y.-O. Kim, K.-H. Jung, "Enzymatic synthesis of 1, 2-hexandiol galactoside by whole cells of $\beta$-galactosidase-containing recombinant Escherichia coli", J. Life Sci., Vol.26, No.5, pp. 608-613, (2016). https://doi.org/10.5352/JLS.2016.26.5.608
  11. Y.-O Kim, H. Y. Lee, K.-H. Jung, "NMR spectroscopy and mass spectrometry of 1, 2-hexanediol galactoside synthesized using Escherichia coli $\beta$-galactosidase", J. Korean Oil Chemists' Soc., Vol.33, No.2, pp. 286-292, (2016). https://doi.org/10.12925/jkocs.2016.33.2.286
  12. J.-S. Kim. K.-H. Jung, "Cytotoxic effects of 1, 2-hexanediol and 1, 2-hexanediol galactoside on HaCaT", J. Soc. Cosmet. Sci. Korea, Vol.44, No.3, pp. 343-347, (2018). https://doi.org/10.15230/SCSK.2018.44.3.343
  13. K.-H. Jung, "Enhanced enzyme activities of inclusion bodies of recombinant $\beta$-galactosidase via the addition of inducer analog after L-arabinose induction in the araBAD promoter system of Escherichia coli", J. Microbiol. Biotechnol., Vol.18, No.3, pp. 434-442, (2008).
  14. Y.-O Kim, H. Y. Lee, K.-H. Jung, "NMR spectroscopy and mass spectrometry of 1, 2-hexanediol galactoside synthesized using Escherichia coli $\beta$-galactosidase", J. Korean Oil Chemists' Soc., Vol.33, No.2, pp. 286-292, (2016). https://doi.org/10.12925/jkocs.2016.33.2.286
  15. H.-Y. Lee, K.-H. Jung, "NMR spectroscopy and mass spectrometry of benzyl alcohol galactoside synthesized using $\beta$-galactosidase", J. Kor. Appl. Sci. Technol., Vol.36, No.1. pp. 84-89, (2019). https://doi.org/10.12925/JKOCS.2019.36.1.84

Cited by

  1. 대장균 베타-갈락토시데이즈를 이용한 Phenylethanol Galactoside 합성 조건의 최적화 vol.38, pp.1, 2020, https://doi.org/10.12925/jkocs.2021.38.1.99
  2. 1, 2-Octanediol과 1, 2-Octanediol Galactoside의 항균력 및 세포독성 비교연구 vol.38, pp.3, 2020, https://doi.org/10.12925/jkocs.2021.38.3.629
  3. Mass spectrometry와 NMR Spectroscopy를 이용한 1, 2-Octanediol Galactoside의 효소합성 확인 vol.38, pp.3, 2020, https://doi.org/10.12925/jkocs.2021.38.3.824