• Title/Summary/Keyword: radial diameter

Search Result 370, Processing Time 0.027 seconds

NEW EVALUATION METHODS FOR RADIAL UNIFORMITY IN NEUTRON TRANSMUTATION DOPING

  • Kim, Hak-Sung;Lim, Jae-Yong;Pyeon, Cheol-Ho;Misawa, Tsuyoshi;Shiroya, Seiji;Park, Sang-Jun;Kim, Myong-Seop;Oh, Soo-Youl;Jun, Byung-Jin
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.442-449
    • /
    • 2010
  • Recently, the neutron irradiation for large diameter silicon (Si)-ingots of more than 8" diameter is requested to satisfy the demand for the neutron transmutation doping silicon (NTD-Si). By increasing the Si-ingot diameter, the radial non-uniformity becomes larger due to the neutron attenuation effect, which results in a limit of the feasible diameter of the Si-ingot. The current evaluation method has a certain limit to precisely evaluate the radial uniformity of Si-ingot because the current evaluation method does not consider the effect of the Si-ingot diameter on the radial uniformity. The objective of this study is to propose a new evaluation method of radial uniformity by improving the conventional evaluation approach. To precisely predict the radial uniformity of a Si-ingot with large diameter, numerical verification is conducted through comparison with the measured data and introducing the new evaluation method. A new concept of a gradient is introduced as an alternative approach of radial uniformity evaluation instead of the radial resistivity gradient (RRG) interpretation. Using the new concept of gradient, the normalized reaction rate gradient (NRG) and the surface normalized reaction rate gradient (SNRG) are described. By introducing NRG, the radial uniformity can be evaluated with one certain standard regardless of the ingot diameter and irradiation condition. Furthermore, by introducing SNRG, the uniformity on the Si-ingot surface, which is ignored by RRG and NRG, can be evaluated successfully. Finally, the radial uniformity flattening methods are installed by the stainless steel thermal neutron filter and additional Si-pipe to reduce SNRG.

The Wall Shear Rate Distribution Near an End-to-End Anastomosis : Effects of Graft Compliance and Size

  • Rhee, Kye-Han
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.1
    • /
    • pp.41-47
    • /
    • 2003
  • The patency rates of small diameter vascular grafts are disappointing because of the formation of thrombus and intimal hyperplasia. Among the various factors influencing the success of graft surgery, the compliance and the size of a graft are believed to be the most important physical properties of a vascular graft. Mismatch of compliance and size between an artery and a graft alters anastomotic flow characteristics, which may affect the formation of intimal hyperplasia. Among the hemodynamic factors influencing the development of intimal hyperplasia, the wall shear stress is suspected as the most important one. The wall shear stress distributions are experimentally measured near the end-to-end anastomosis models in order to clarify the effects of compliance and diameter mismatch on the hemodynamics near the anastomosis. The effects of radial wall motion, diameter mismatch and impedance phase angle on the wall shear rate distributions near the anastomosis are considered. Compliance mismatch generates both different radial wall motion and instantaneous diameter mismatch between the arterial portion and the graft portion during a flow cycle. Mismatch in diameter seems to be affecting the wall shear rate distribution more significantly compared to radial wall motion. The impedance phase angle also affects the wall shear rate distribution.

  • PDF

Efffct of Material Removal per Tooth on the Circumferential Shape of Cylindrically Milled Parts (공구날당 소재제거량이 원통형 밀링가공물의 원주형상에 미치는 영향)

  • Kim Kwang Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.62-66
    • /
    • 2004
  • A study for investigating the effects of the cutting conditions(feed rate, radial depth of cut, cutting speed) and the tool diameter on the circumferential geometry of the cyl indrically end-mi1led workpiece is described. In this work, the circumferential geometry is characterized by the roundness error. Experimental results show that the circumferential geometry is directly affected by the material removal per tooth,which is defined as a function of the cutting speed, the feed rate and the radial depth of cut. And, the radial depth of cut is revealed to be the most critical condition among them. It is also found that the roundness error decreases when the tool diameter is larger under the same cutting conditions.

Capillary Flow in Different Cells of Ginkgo Biloba, Diospyros Kaki and Ailanthus Altissima (은행나무, 감나무, 가중나무 세포내강의 액체이동)

  • Chun, Su Kyoung
    • Journal of the Korea Furniture Society
    • /
    • v.26 no.2
    • /
    • pp.179-185
    • /
    • 2015
  • A study was carried out to observe the 1% aqueous safranine solution flow speed in longitudinal and radial directions of softwood G. biloba, ring-porous wood A. altissima, and diffuse- porouswood D. kaki. In radial direction, ray cells and in longitudinal direction tracheids, vessel and wood fiber were considered for the measurement of liquid penetration speed at less than 12% moisture contents (MC). The length, lumen diameter, pit diameter, end wall pit diameter and the numbers of end wall pits determined for the flow rate. The liquid flow in the those cells was captured via video and the capillary flow rate in the ones were measured. Vessel in hardwood species and tracheids in softwood was found to facilitate prime role in longitudinal penetration. Radial flow speed was found highest in ray parenchyma of G. biloba. Anatomical features like the length and diameter, end-wall pit numbers of ray parenchyma were found also responsible fluid flow differences. On the other hand, vessel and fiber structure affected the longitudinal flow of liquids. Therefore, the average liquid penetration depth in longitudinal tracheids of G. biloba was found the highest among all cells considered in D. kaki and A. altissima.

Hemodynamic Effects on Artery-Graft Anastomotic Intimal Hyperplasia (혈류의 유동이 혈관-인조혈관 접속부 혈관 내막 세포증식에 미치는 영향)

  • 이계한
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.143-150
    • /
    • 1994
  • Wall shear rate or stress is believed to be a major hemodynamic variable influencing atherosclerosis and artery-graft anastomic intimal hyperplasia. The purpose of this study is to verify the effects of radial wall motion, artery-graft compliance and diameter mismatch, and impedance phase angle on the wall shear rate distribution near an end-to-end artery-graft anastomosis model. The results show that radial wall motion of the elastic artery model lowers the mean wall shear rates under pulsatile flow condition by 15 to 20 % comparing to those under steady flow condition at the same mean flow rate. Impedance phase angle seems to have small effects on the mean and amplitude of the wall shear rate distribution. In order to study the effects of compliance and diameter mismatch on the wall shear rates, two models are studied-Model I has 6% and Model I has 6% and Model II has 11% smaller graft diameter. Divergent geometry caused by diameter mismatch near the distal sites reduces the mean wall shear rates significantly, and this low shear region is believed to be prone to intimal hyperplasia.

  • PDF

Concentric Structure and Radial Joint System within Basic Lava Flow at the seashore of Aewol, Jeju Island, South Korea (제주도 애월읍 해안의 염기성 용암류에 발달한 동심원 구조와 방사상 절리)

  • Ahn, Kun Sang
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.185-194
    • /
    • 2021
  • A lava dome and sheet lava flow can be observed at the seashore of Aewol, Jeju island. The cylindrical lobes are characterized by a concentric structure consisting of a massive core and radial joints. Columnar joints with different thickness between the upper and lower parts are developed in the sheet lava flow around the rock salt field in Goeomri. The upper part of the columnar joints is uneven in shape, and has a diameter of 120-150 cm. The lower part of the columnar joints is hexagonal and pentagonal in shape, and has a diameter of about 60 cm. The cylindrical lobes can be divided into two groups based on size and shape. One is a megalobe, with a semicircular outline and a maximum diameter of 30 m. The other is a circular lobe with a diameter of less than 10 m. The columns in the radial joints have hexagonal and pentagonal cross sections and gradually increasing diameter, outward from the core, to a size of 80-120 cm at the rim. The concentric structure observed in the cylindrical lavas is attributable to a combination of four factors. The first is a circular crack caused by the decrease of the temperature and density difference between the inside and outside of the cylindrical lava flow. The second is a concentric chisel mark of the radial joints, which formed at the same time as the radial joints. The third is a flow band, which is a trace left in a round passage when lava flows through. The fourth is a vesicular band formed in a cave by gas bubbles escaping from the lava flow.

Alterations in Growth and Morphology of Ganoderma lucidum and Volvariella volvaceae in Response to Nanoparticle Supplementation

  • Singh, Swarnjeet;Kuca, Kamil;Kalia, Anu
    • Mycobiology
    • /
    • v.48 no.5
    • /
    • pp.383-391
    • /
    • 2020
  • Use of nanoparticles (NPs) in several commercial products has led to emergence of novel contaminants of air, soil and water bodies. The NPs may exhibit greater ecotoxicity due to nano-scale dependent properties over their bulk counterparts. The present investigation explores the effect of in vitro supplementation of TiO2, silica and silver NPs on radial growth and ultrastructural changes in the hyphae and spores of two mushroom genera, Ganoderma lucidum and Volvariella volvaceae. A concentration dependent decrease in radial growth on NP amended potato dextrose agar medium was recorded. However, in comparison to control, there was decrease in radial diameter on supplementation with TiO2 NPs while an increase was recorded for silica and silver NPs amendments as compared to their bulk salts at same concentrations after 48 h of incubation. Optical microscopy studies showed decrease in the number of spores while increase in spore diameter and thinning of hyphal diameter on NPs supplementation. Scanning electron microscopy analysis of fungal growth showed presence of deflated and oblong spores in two fruiting strains of Ganoderma while Volvariella exhibited decreased sporulation. Further, hyphal thinning and branching was recorded in response to NP amendments in both the test mushrooms. Enhancement of protein content was observed on NP compared to bulk supplementation for all cultures, concentrations and hours of incubation except for TiO2 NPs. Likewise, bulk and NP supplementations (at 100 mg L-1) resulted in enhanced laccase activity with occurrence of laccase specific protein bands on SDS-PAGE analysis.

Development and Application of Image Analysis Program for Investigation of Pore Characteristics in Transverse Surface of Hardwoods

  • Kwon, Oh-Kyung;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.29-37
    • /
    • 1998
  • An image analysis program with the function of measuring various quantitative characteristics in the transverse surface of wood was developed using Delphi 2.0. Data on pore characteristics (conditions for image processing, proportion of pores in relationship to other elements, tangential diameter, area, tangential and radial diameter, x and y coordinates of pore center, and geometric coefficients) were saved in text file format. In addition, the pore area histogram in the tangential and radial directions was saved as a BMP (bitmap) type file. Analyses indicated that quantitative characteristics such as the relative radial distribution of pores in a growth ring, pore tangential area histogram, and proportion of pore in lumen area appear to be useful in separating four diffuse-porous woods and four ring-porous woods on the species level.

  • PDF

Calculation of the Entropies and Chemical Potentials of Hard-Sphere Solutes Solvated in Hard-Sphere Solids Using the Radial Free-Space Distribution Function

  • 윤병집
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1209-1212
    • /
    • 1999
  • The entropies and chemical potentials of hard-sphere solutes solvated in hard-sphere solids were calculated by Monte Carlo method using the radial free-space distribution function. This method is based on calculating the entropy by comparing the free volume of a molecule with that of an ideal gas, and is applicable even when the size of solute is very large and the solvent is a solid. When the diameter of hard-sphere solute is small the solute molecule behaves as like as a fluid in solid structures, but when the diameter of solute becomes large, a fluid-to-solid phase transition takes place. The fluid-to-solid phase transition occurs at the region of the smaller size of solute with the more increase of solvent density. The least square fit values of analytical form of the radial free-space distribution functions of solute molecules are presented for future uses.

Application of FTM and RSM for the Design of Cold Backward Extrusion Dies (냉간 후방 압출 금형설계에 FTM과 RSM의 활용)

  • Yeo H.T.;Choi Y.;Song Y.S.;Hur K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.11a
    • /
    • pp.99-106
    • /
    • 2001
  • The design for cold extrusion dies is very important, because the die insert is subjected to very high radial and hoop stresses. The design of cold extrusion dies has many constrained conditions. In this paper, the used assumptions are such that the yield strength of each ring is selected according to the allowable tensile or compressive hoop stress in each ring and the maximum allowable inner pressure, when yielding occurs in one ring of the dies, is obtained by the proposed equation. In order to obtain design variables, such as diameter ratios and interferences, using the maximum inner pressure, the flexible tolerance method was used for shrink-fitted thick-walled cylinders. ANSYS APDL was used to perform the repeated analysis of deformation of the dies due to the variation of the design variables. The response surface methodology is utilized to analyze the relationship between the design variables and the maximum radial displacement of the die insert during extrusion. From the results, it is found that outer diameter of the die Insert has the largest effect on the minimization of maximum radial displacement at the inner surface of the dies.

  • PDF