DOI QR코드

DOI QR Code

Physiological Response of Escherichia coli W3110 and BL21 to the Aerobic Expression of Vitreoscilla Hemoglobin

  • Lara, Alvaro R. (Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana-Cuajimalpa) ;
  • Galindo, Janet (Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana-Cuajimalpa) ;
  • Jaen, Karim E. (Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana-Cuajimalpa) ;
  • Juarez, Mariana (Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana-Cuajimalpa) ;
  • Sigala, Juan-Carlos (Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana-Cuajimalpa)
  • Received : 2020.04.16
  • Accepted : 2020.07.13
  • Published : 2020.10.28

Abstract

The aerobic growth and metabolic performance of Escherichia coli strains BL21 and W3110 were studied when the Vitreoscilla hemoglobin (VHb) was constitutively expressed in the chromosome. When VHb was expressed, acetate production decreased in both strains and was nearly eliminated in BL21. Transcriptional levels of the glyoxylate shunt genes decreased in both strains when VHb was expressed. However, higher transcription of the α-ketoglutarate dehydrogenase genes were observed for W3110, while for BL21 transcription levels decreased. VHb expression reduced the transcription of the cytochrome bo3 genes only in BL21. These results are useful for better selecting a production host.

Keywords

References

  1. Wei XX, Chen GQ. 2008. Applications of the VHb gene vgb for improved microbial fermentation processes. Methods Enzymol. 436: 273-283. https://doi.org/10.1016/S0076-6879(08)36015-7
  2. Stark BC, Dikshit KL, Pagilla KR. 2012. The biochemistry of Vitreoscilla hemoglobin. Comput. Struct. Biotechnol. J. 3: e201210002. https://doi.org/10.5936/csbj.201210002
  3. Stark BC, Pagilla KR, Dikshit KL. 2015. Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation. Appl. Microbiol. Biotechnol. 99: 1627-1636. https://doi.org/10.1007/s00253-014-6350-y
  4. Pablos TE, Sigala JC, Le Borgne S, Lara AR. 2014. Aerobic expression of Vitreoscilla hemoglobin efficiently reduces overflow metabolism in Escherichia coli. Biotechnol. J. 9: 791-799. https://doi.org/10.1002/biot.201300388
  5. Juarez M, Gonzalez-De la Rosa CH, Memun E, Sigala JC, Lara AR. 2017. Aerobic expression of Vitreoscilla hemoglobin improves the growth performance of CHO-K1 cells. Biotechnol. J. 12: 1600438. https://doi.org/10.1002/biot.201600438
  6. Zhang H, Kang X, Xiao N, Gao M, Zhao Y, Zhang B, et al. 2019. Intracellular expression of Vitreoscilla haemoglobin improves lipid production in Yarrowia lipolytica. Lett. Appl. Microbiol. 68: 248-257. https://doi.org/10.1111/lam.13111
  7. Marisch K, Bayer K, Scharl T, Mairhofer J, Krempl PM, Hummel K, et al. 2013. Comparative analysis of industrial Escherichia coli K- 12 and B strains in high-glucose batch cultivations on process-, transcriptome- and proteome level. PLoS One 8: e70516. https://doi.org/10.1371/journal.pone.0070516
  8. Monk JM, Koza A, Campodonico MA, Machado D, Seoane JM, Palsson BO, et al. 2016. Multi-omics quantification of species variation of Escherichia coli links molecular features with strain phenotypes. Cell Syst. 3: 238-251. https://doi.org/10.1016/j.cels.2016.08.013
  9. Noronha SB, Yeh HJC, Spande TF, Shiloach J. 2000. Investigation of the TCA cycle and the glyoxylate shunt in Escherichia coli BL21 and JM109 using $^{13}C$-NMR/MS. Biotechnol. Bioeng. 68: 316-327. https://doi.org/10.1002/(SICI)1097-0290(20000505)68:3<316::AID-BIT10>3.0.CO;2-2
  10. Phue JN, Noronha SB, Hattacharyya R, Wolfe AJ, Shiloah J. 2005. Glucose metabolism at high density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and northern blot analyses. Biotechnol. Bioeng. 90: 805-820. https://doi.org/10.1002/bit.20478
  11. Yang J, Webster DA, Stark BC. 2005. ArcA works with Fnr as a positive regulator of Vitreoscilla (bacterial) hemoglobin gene expression in Escherichia coli. Microbiol. Res. 160: 405-415. https://doi.org/10.1016/j.micres.2005.03.004
  12. Tsai PS, Hatzimanikatis V, Bailey JE. 1996. Effect of Vitreoscilla hemoglobin dosage on microaerobic Escherichia coli carbon and energy metabolism. Biotechnol. Bioeng. 49: 139-150. https://doi.org/10.1002/(SICI)1097-0290(19960120)49:2<139::AID-BIT3>3.0.CO;2-R
  13. Taymaz-Nikerel H, Borujeni AE, Verheijen PJT, Heijnen JJ, van Gulik WM. 2010. Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry. Biotechnol. Bioeng. 107: 369-381 https://doi.org/10.1002/bit.22802
  14. Maharjan RP, Seeto S, Ferenci T. 2007. Divergence and redundancy of transport and metabolic rate-yield strategies in a single Escherichia coli population. J. Bacteriol. 189: 2350-2358. https://doi.org/10.1128/JB.01414-06
  15. Frey AD, Fiaux J, Szyperski T, Wüthrich K, Bailey JE, Kallio PT. 2001. Dissection of central carbon metabolism of hemoglobinexpressing Escherichia coli by $^{13}C$ nuclear magnetic resonance flux distribution analysis in microaerobic bioprocesses. Appl. Environ. Microbiol. 67: 680-687. https://doi.org/10.1128/AEM.67.2.680-687.2001
  16. Kim TS, Jung HY, Kim SY, Zhang L, Li J, Sigdel S, et al. 2015. Reduction of acetate and lactate contributed to enhancement of a recombinant protein production in E. coli BL21. J. Microbiol. Biotechnol. 25: 1093-1100. https://doi.org/10.4014/jmb.1503.03023
  17. Rowley DL, Fawcett WP, Wolf RE Jr. 1992. Molecular characterization of mutations affecting expression level and growth ratedependent regulation of the Escherichia coli zwf gene. J. Bacteriol. 174: 623-626. https://doi.org/10.1128/JB.174.2.623-626.1992
  18. Kim HU, Kim WJ, Lee SY. 2013. Flux-coupled genes and their use in metabolic flux analysis. Biotechnol. J. 8: 1035-1042. https://doi.org/10.1002/biot.201200279
  19. Jaen KE, Velazquez D, Delvigne F, Sigala JC, Lara AR. 2019b. Engineering E. coli for improved microaerobic pDNA production. Bioproc. Biosyst. Eng. 42: 1457-1466. https://doi.org/10.1007/s00449-019-02142-5
  20. Jaen KE, Velazquez D, Sigala JC, Lara AR. 2019a. Design of a microaerobically inducible replicon for high-yield plasmid DNA production. Biotechnol. Bioeng. 116: 2514-2525. https://doi.org/10.1002/bit.27091
  21. Sabido A, Sigala JC, Hernandez-Chavez G, Flores N, Gosset G, et al. 2014. Physiological and transcriptional characterization of Escherichia coli strains lacking interconversion of phosphoenolpyruvate and pyruvate when glucose and acetate are coutilized. Biotechnol. Bioeng. 111: 1150-1160. https://doi.org/10.1002/bit.25177
  22. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}CT}$ method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  23. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55: 611-622. https://doi.org/10.1373/clinchem.2008.112797

Cited by

  1. Vitreoscilla Haemoglobin: A Tool to Reduce Overflow Metabolism vol.10, pp.1, 2022, https://doi.org/10.3390/microorganisms10010043