References
- Keilhauer C, Eggeling L, Sahm H. 1993. Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvNilvC operon. J. Bacteriol. 175: 5595-5603. https://doi.org/10.1128/JB.175.17.5595-5603.1993
- Georgi T, Rittmann D, Wendisch VF. 2005. Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase. Metab. Eng. 7: 291-301. https://doi.org/10.1016/j.ymben.2005.05.001
- Kinoshita S, Udaka S, Shimono M. 2004. Studies on the amino acid fermentation. Part 1. Production of L-glutamic acid by various microorganisms. J. Gen. Appl. Microbiol. 50: 331-343.
- Lee JY, Na YA, Kim E, Lee HS, Kim P. 2016. The Actinobacterium Corynebacterium glutamicum, an Industrial Workhorse. J. Microbiol. Biotechnol. 26: 807-822. https://doi.org/10.4014/jmb.1601.01053
- Becker J, Giesselmann G, Hoffmann SL, Wittmann C. 2018. Corynebacterium glutamicum for sustainable bioproduction: from metabolic physiology to systems metabolic engineering. Adv. Biochem. Eng. Biotechnol. 162: 217-263.
- Ruan Y, Zhu L, Li Q. 2015. Improving the electro-transformation efficiency of Corynebacterium glutamicum by weakening its cell wall and increasing the cytoplasmic membrane fluidity. Biotechnol. Lett. 37: 2445-2452. https://doi.org/10.1007/s10529-015-1934-x
- Jansen R, Embden JD, Gaastra W, Schouls LM. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43: 1565-1575. https://doi.org/10.1046/j.1365-2958.2002.02839.x
- Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709-1712. https://doi.org/10.1126/science.1138140
- Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60: 174-182. https://doi.org/10.1007/s00239-004-0046-3
- Lone BA, Karna SKL, Ahmad F, Shahi N, Pokharel YR. 2018. CRISPR/Cas9 System: A Bacterial Tailor for Genomic Engineering. Genet. Res. Int. 2018: 3797214. https://doi.org/10.1155/2018/3797214
- Peng F, Wang X, Sun Y, Dong G, Yang Y, Liu X, et al. 2017. Efficient gene editing in Corynebacterium glutamicum using the CRISPR/ Cas9 system. Microb. Cell Fact. 16: 201. https://doi.org/10.1186/s12934-017-0814-6
- Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, et al. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321: 960-964. https://doi.org/10.1126/science.1159689
- Marraffini LA, Sontheimer EJ. 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322: 1843-1845. https://doi.org/10.1126/science.1165771
- Cameron Coates R, Blaskowski S, Szyjka S, van Rossum HM, Vallandingham J, Patel K, et al. 2019. Systematic investigation of CRISPR-Cas9 configurations for flexible and efficient genome editing in Corynebacterium glutamicum NRRL-B11474. J. Ind. Microbiol. Biotechnol. 46: 187-201. https://doi.org/10.1007/s10295-018-2112-7
- Maizels N, Davis L. 2018. Initiation of homologous recombination at DNA nicks. Nucleic Acids Res. 46: 6962-6973. https://doi.org/10.1093/nar/gky588
- Zerbini F, Zanella I, Fraccascia D, Konig E, Irene C, Frattini LF, et al. 2017. Large scale validation of an efficient CRISPR/Cas-based multi gene editing protocol in Escherichia coli. Microb. Cell Fact. 16: 68. https://doi.org/10.1186/s12934-017-0681-1
- Jiang Y, Qian F, Yang J, Liu Y, Dong F, Xu C, et al. 2017. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat. Commun. 8: 15179. https://doi.org/10.1038/ncomms15179
- Gasiunas G, Barrangou R, Horvath P, Siksnys V. 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 109: E2579-2586. https://doi.org/10.1073/pnas.1109397109
- Cho JS, Choi KR, Prabowo CPS, Shin JH, Yang D, Jang J, et al. 2017. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab. Eng. 42: 157-167. https://doi.org/10.1016/j.ymben.2017.06.010
- Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163: 759-771. https://doi.org/10.1016/j.cell.2015.09.038
- Wright AV, Nunez JK, Doudna JA. 2016. Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 164: 29-44. https://doi.org/10.1016/j.cell.2015.12.035
- Komor AC, Badran AH, Liu DR. 2017. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168: 20-36. https://doi.org/10.1016/j.cell.2016.10.044
- Binder S, Siedler S, Marienhagen J, Bott M, Eggeling L. 2013. Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation. Nucleic Acids Res. 41: 6360-6369. https://doi.org/10.1093/nar/gkt312
- Krumbach K, Sonntag CK, Eggeling L, Marienhagen J. 2019. CRISPR/Cas12a Mediated genome editing to introduce amino acid substitutions into the mechanosensitive channel MscCG of Corynebacterium glutamicum. ACS Synth. Biol. 8: 2726-2734. https://doi.org/10.1021/acssynbio.9b00361
- Lee HJ, Kim HJ, Lee SJ. 2020. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs. Genome Res. 30: 768-775. https://doi.org/10.1101/gr.257493.119
- Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145: 69-73. https://doi.org/10.1016/0378-1119(94)90324-7
- Park S-D, Lee S-N, Park I-H, Choi J-S, Jeong W-K, Kim Y, et al. 2004. Isolation and characterization of transcriptional elements from Corynebacterium glutamicum. J. Microbiol. Biotehcnol. 14: 789-795.
- Heider SA, Peters-Wendisch P, Wendisch VF. 2012. Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum. BMC Microbiol. 12: 198. https://doi.org/10.1186/1471-2180-12-198
- Anderson EM, Haupt A, Schiel JA, Chou E, Machado HB, Strezoska Z, et al. 2015. Systematic analysis of CRISPR-Cas9 mismatch tolerance reveals low levels of off-target activity. J. Biotechnol. 211: 56-65. https://doi.org/10.1016/j.jbiotec.2015.06.427
- Shen J, Chen J, Jensen PR, Solem C. 2017. A novel genetic tool for metabolic optimization of Corynebacterium glutamicum: efficient and repetitive chromosomal integration of synthetic promoter-driven expression libraries. Appl. Microbiol. Biotechnol. 101: 4737-4746. https://doi.org/10.1007/s00253-017-8222-8
- Zhang J, Yang F, Yang Y, Jiang Y, Huo YX. 2019. Optimizing a CRISPR-Cpf1-based genome engineering system for Corynebacterium glutamicum. Microb. Cell Fact. 18: 60. https://doi.org/10.1186/s12934-019-1109-x
- Nishio Y, Nakamura Y, Kawarabayasi Y, Usuda Y, Kimura E, Sugimoto S, et al. 2003. Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res. 13: 1572-1579. https://doi.org/10.1101/gr.1285603
- Liu J, Wang Y, Lu Y, Zheng P, Sun J, Ma Y. 2017. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Microb. Cell Fact. 16: 205. https://doi.org/10.1186/s12934-017-0815-5
- Wang B, Hu Q, Zhang Y, Shi R, Chai X, Liu Z, et al. 2018. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum. Microb. Cell Fact. 17: 63. https://doi.org/10.1186/s12934-018-0910-2
- Tung QN, Loi VV, Busche T, Nerlich A, Mieth M, Milse J, et al. 2019. Stable integration of the Mrx1-roGFP2 biosensor to monitor dynamic changes of the mycothiol redox potential in Corynebacterium glutamicum. Redox Biol. 20: 514-525. https://doi.org/10.1016/j.redox.2018.11.012
- Santamaria R, Gil JA, Mesas JM, Martin JF. 1984. Characterization of an endogenous plasmid and development of cloning vectors and transformation system in Brevibacterium lactofermentum. Microbiology 130: 2237-2246. https://doi.org/10.1099/00221287-130-9-2237
- Huang Y, Li L, Xie S, Zhao N, Han S, Lin Y, et al. 2017. Recombineering using RecET in Corynebacterium glutamicum ATCC14067 via a self-excisable cassette. Sci. Rep. 7: 7916. https://doi.org/10.1038/s41598-017-08352-9
- Ronda C, Pedersen LE, Sommer MO, Nielsen AT. 2016. CRMAGE: CRISPR Optimized MAGE Recombineering. Sci. Rep. 6: 19452. https://doi.org/10.1038/srep19452
- Fu BX, St Onge RP, Fire AZ, Smith JD. 2016. Distinct patterns of Cas9 mismatch tolerance in vitro and in vivo. Nucleic Acids Res. 44: 5365-5377. https://doi.org/10.1093/nar/gkw417
- Zheng T, Hou Y, Zhang P, Zhang Z, Xu Y, Zhang L, et al. 2017. Profiling single-guide RNA specificity reveals a mismatch sensitive core sequence. Sci. Rep. 7: 40638. https://doi.org/10.1038/srep40638
Cited by
- Optimizing recombineering in Corynebacterium glutamicum vol.118, pp.6, 2020, https://doi.org/10.1002/bit.27737
- Mismatch Intolerance of 5′-Truncated sgRNAs in CRISPR/Cas9 Enables Efficient Microbial Single-Base Genome Editing vol.22, pp.12, 2020, https://doi.org/10.3390/ijms22126457
- Advances in Accurate Microbial Genome-Editing CRISPR Technologies vol.31, pp.7, 2021, https://doi.org/10.4014/jmb.2106.06056