References
- Raheem A, Prinsen P, Vuppaladadiyam AK, Zhao M, Luque R. 2018. A review on sustainable microalgae based biofuel and bioenergy production: Recent developments. J. Clean Prod. 181: 42-59. https://doi.org/10.1016/j.jclepro.2018.01.125
- Ho SH, Ye X, Hasunuma T, Chang JS, Kondo A. 2014. Perspectives on engineering strategies for improving biofuel production from microalgae--a critical review. Biotechnol. Adv. 32: 1448-1459. https://doi.org/10.1016/j.biotechadv.2014.09.002
- Williams PJL, Laurens LML. 2010. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energ. Environ. Sci. 3: 554-590. https://doi.org/10.1039/b924978h
- Sander K, Murthy GS. 2010. Life cycle analysis of algae biodiesel. Int. J. Life Cycle Ass. 15: 704-714. https://doi.org/10.1007/s11367-010-0194-1
- Gifuni I, Pollio A, Safi C, Marzocchella A, Olivieri G. 2019. Current bottlenecks and challenges of the microalgal biorefinery. Trends Biotechnol. 37: 242-252. https://doi.org/10.1016/j.tibtech.2018.09.006
- Kim J, Yoo G, Lee H, Lim J, Kim K, Kim CW, et al. 2013. Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol. Adv. 31: 862-876. https://doi.org/10.1016/j.biotechadv.2013.04.006
- Courchesne NM, Parisien A, Wang B, Lan CQ. 2009. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J. Biotechnol. 141: 31-41. https://doi.org/10.1016/j.jbiotec.2009.02.018
- Bajhaiya AK, Moreira JZ, Pittman JK. 2017. Transcriptional engineering of microalgae: Prospects for high-value chemicals. Trends Biotechnol. 35: 95-99. https://doi.org/10.1016/j.tibtech.2016.06.001
- Kang NK, Jeon S, Kwon S, Koh HG, Shin SE, Lee B, et al. 2015. Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina. Biotechnol. Biofuels 8: 200. https://doi.org/10.1186/s13068-015-0386-9
- Kwon S, Kang NK, Koh HG, Shin SE, Lee B, Jeong BR, et al. 2018. Enhancement of biomass and lipid productivity by overexpression of a bZIP transcription factor in Nannochloropsis salina. Biotechnol. Bioeng. 115: 331-340. https://doi.org/10.1002/bit.26465
- Kang NK, Kim EK, Sung MG, Kim YU, Jeong BR, Chang YK. 2019. Increased biomass and lipid production by continuous cultivation of Nannochloropsis salina transformant overexpressing a bHLH transcription factor. Biotechnol. Bioeng. 116: 555-568. https://doi.org/10.1002/bit.26894
- Kang NK, Kim EK, Kim YU, Lee B, Jeong WJ, Jeong BR, et al. 2017. Increased lipid production by heterologous expression of AtWRI1 transcription factor in Nannochloropsis salina. Biotechnol. Biofuels 10: 231. https://doi.org/10.1186/s13068-017-0919-5
- Zhang J, Hao Q, Bai L, Xu J, Yin W, Song L, et al. 2014. Overexpression of the soybean transcription factor GmDof4 significantly enhances the lipid content of Chlorella ellipsoidea. Biotechnol. Biofuels 7: 128. https://doi.org/10.1186/s13068-014-0128-4
- Ibanez-Salazar A, Rosales-Mendoza S, Rocha-Uribe A, Ramirez-Alonso JI, Lara-Hernandez I, Hernandez-Torres A, et al. 2014. Over-expression of Dof-type transcription factor increases lipid production in Chlamydomonas reinhardtii. J. Biotechnol. 184: 27-38. https://doi.org/10.1016/j.jbiotec.2014.05.003
- Smetana S, Sandmann M, Rohn S, Pleissner D, Heinz V. 2017. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment. Bioresour. Technol. 245: 162-170. https://doi.org/10.1016/j.biortech.2017.08.113
- Song M, Pei H. 2018. The growth and lipid accumulation of Scenedesmus quadricauda during batch mixotrophic/heterotrophic cultivation using xylose as a carbon source. Bioresour. Technol. 263: 525-531. https://doi.org/10.1016/j.biortech.2018.05.020
- Perez-Garcia O, Escalante FM, de-Bashan LE, Bashan Y. 2011. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 45: 11-36. https://doi.org/10.1016/j.watres.2010.08.037
- Johnson X, Alric J. 2013. Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot. Cell 12: 776-793. https://doi.org/10.1128/EC.00318-12
- Mohamed MS, Wei LZ, Ariff AB. 2011. Heterotrophic cultivation of microalgae for production of biodiesel. Recent Pat. Biotechnol. 5: 95-107. https://doi.org/10.2174/187220811796365699
- Patel A, Matsakas L, Rova U, Christakopoulos P. 2018. Heterotrophic cultivation of Auxenochlorella protothecoides using forest biomass as a feedstock for sustainable biodiesel production. Biotechnol. Biofuels 11: 169. https://doi.org/10.1186/s13068-018-1173-1
- Orfield ND, Levine RB, Keoleian GA, Miller SA, Savage PE. 2015. Growing algae for biodiesel on direct sunlight or sugars: a comparative life cycle assessment. Acs Sustain. Chem. Eng. 3: 386-395. https://doi.org/10.1021/sc5004117
- Yun JH, Cho DH, Heo J, Lee YJ, Lee B, Chang YK, et al. 2019. Evaluation of the potential of Chlorella sp. HS2, an algal isolate from a tidal rock pool, as an industrial algal crop under a wide range of abiotic conditions. J. Appl. Phycol. 31: 2245-2258. https://doi.org/10.1007/s10811-019-1751-z
- Shin WS, Lee B, Kang NK, Kim YU, Jeong WJ, Kwon JH, et al. 2017. Complementation of a mutation in CpSRP43 causing partial truncation of light-harvesting chlorophyll antenna in Chlorella vulgaris. Sci. Rep. 7: 17929. https://doi.org/10.1038/s41598-017-18221-0
- Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, 3rd, Smith HO. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6: 343-345. https://doi.org/10.1038/nmeth.1318
- Wan M, Rosenberg JN, Faruq J, Betenbaugh MJ, Xia J. 2011. An improved colony PCR procedure for genetic screening of Chlorella and related microalgae. Biotechnol. Lett. 33: 1615-1619. https://doi.org/10.1007/s10529-011-0596-6
- Turatsinze JV, Thomas-Chollier M, Defrance M, van Helden J. 2008. Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules. Nat. Protoc. 3: 1578-1588. https://doi.org/10.1038/nprot.2008.97
- Hu J, Wang D, Li J, Jing G, Ning K, Xu J. 2014. Genome-wide identification of transcription factors and transcription-factor binding sites in oleaginous microalgae Nannochloropsis. Sci. Rep. 4: 5454. https://doi.org/10.1038/srep05454
- Correa LG, Riano-Pachon DM, Schrago CG, dos Santos RV, Mueller-Roeber B, Vincentz M. 2008. The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One 3: e2944. https://doi.org/10.1371/journal.pone.0002944
- Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, et al. 2002. bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7: 106-111. https://doi.org/10.1016/S1360-1385(01)02223-3
- Broeckx T, Hulsmans S, Rolland F. 2016. The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. J. Exp. Bot. 67: 6215-6252. https://doi.org/10.1093/jxb/erw416
- Ryu BG, Kim J, Yoo G, Lim JT, Kim W, Han JI, et al. 2014. Microalgae-mediated simultaneous treatment of toxic thiocyanate and production of biodiesel. Bioresour. Technol. 158: 166-173.
- Kotrbacek V, Doubek J, Doucha J. 2015. The chlorococcalean alga Chlorella in animal nutrition: a review. J. Appl. Phycol. 27: 2173-2180. https://doi.org/10.1007/s10811-014-0516-y
- Abdelnour SA, Abd El-Hack ME, Arif M, Khafaga AF, Taha AE. 2019. The application of the microalgae Chlorella spp. as a supplement in broiler feed. World Poultry Sci. J. 75: 305-318. https://doi.org/10.1017/S0043933919000047
- Yang B, Liu J, Jiang Y, Chen F. 2016. Chlorella species as hosts for genetic engineering and expression of heterologous proteins: Progress, challenge and perspective. Biotechnol. J. 11: 1244-1261. https://doi.org/10.1002/biot.201500617
- Gouveia L, Oliveira AC. 2009. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 36: 269-274. https://doi.org/10.1007/s10295-008-0495-6
- Yan JY, Kuang YL, Gui XH, Han XF, Yan YJ. 2019. Engineering a malic enzyme to enhance lipid accumulation in Chlorella protothecoides and direct production of biodiesel from the microalgal biomass. Biomass Bioenerg. 122: 298-304. https://doi.org/10.1016/j.biombioe.2019.01.046
- Nayak M, Suh WI, Lee B, Chang YK. 2018. Enhanced carbon utilization efficiency and FAME production of Chlorella sp. HS2 through combined supplementation of bicarbonate and carbon dioxide. Energ. Convers. Manage. 156: 45-52. https://doi.org/10.1016/j.enconman.2017.11.002
- Kim DW, Shin WS, Sung MG, Lee B, Chang YK. 2019. Light intensity control as a strategy to improve lipid productivity in Chlorella sp. HS2 for biodiesel production. Biomass Bioenerg. 126: 211-219. https://doi.org/10.1016/j.biombioe.2019.05.014
- Nayak M, Suh WI, Chang YK, Lee B. 2019. Exploration of two-stage cultivation strategies using nitrogen starvation to maximize the lipid productivity in Chlorella sp. HS2. Bioresour. Technol. 276: 110-118. https://doi.org/10.1016/j.biortech.2018.12.111
- Nayak M, Rashid N, Suh WI, Lee B, Chang YK. 2019. Performance evaluation of different cationic flocculants through pH modulation for efficient harvesting of Chlorella sp. HS2 and their impact on water reusability. Renew. Energ. 136: 819-827. https://doi.org/10.1016/j.renene.2019.01.050
- Matzke AJ, Matzke MA. 1998. Position effects and epigenetic silencing of plant transgenes. Curr. Opin. Plant Biol. 1: 142-148. https://doi.org/10.1016/S1369-5266(98)80016-2
- Blacklock BJ, Jaworski JG. 2006. Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases. Biochem. Biophys. Res. Commun. 346: 583-590. https://doi.org/10.1016/j.bbrc.2006.05.162
- Kim HS, Park WK, Lee B, Seon G, Suh WI, Moon M, et al. 2019. Optimization of heterotrophic cultivation of Chlorella sp. HS2 using screening, statistical assessment, and validation. Sci. Rep. 9: 19383. https://doi.org/10.1038/s41598-019-55854-9
- Bamgboye AI, Hansen AC. 2008. Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester (FAME) composition. Int. Agrophys. 22: 21-29.
- Gopinath A, Puhan S, Nagarajan G. 2009. Relating the cetane number of biodiesel fuels to their fatty acid composition: a critical study. Proc. Inst. Mech. Eng. D 223: 565-583. https://doi.org/10.1243/09544070JAUTO950
- Ramos MJ, Fernandez CM, Casas A, Rodriguez L, Perez A. 2009. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 100: 261-268. https://doi.org/10.1016/j.biortech.2008.06.039
Cited by
- Microalgal metabolic engineering strategies for the production of fuels and chemicals vol.345, 2020, https://doi.org/10.1016/j.biortech.2021.126529