DOI QR코드

DOI QR Code

Enhancement of Lipid Production under Heterotrophic Conditions by Overexpression of an Endogenous bZIP Transcription Factor in Chlorella sp. HS2

  • Lee, Hansol (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Shin, Won-Sub (Advanced Biomass R&D Center) ;
  • Kim, Young Uk (Advanced Biomass R&D Center) ;
  • Jeon, Seungjib (Advanced Biomass R&D Center) ;
  • Kim, Minsik (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kang, Nam Kyu (Advanced Biomass R&D Center) ;
  • Chang, Yong Keun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2020.05.31
  • Accepted : 2020.07.26
  • Published : 2020.10.28

Abstract

Transcription factor engineering to regulate multiple genes has shown promise in the field of microalgae genetic engineering. Here, we report the first use of transcription factor engineering in Chlorella sp. HS2, thought to have potential for producing biofuels and bioproducts. We identified seven endogenous bZIP transcription factors in Chlorella sp. HS2 and named them HSbZIP1 through HSbZIP7. We overexpressed HSbZIP1, a C-type bZIP transcription factor, in Chlorella sp. HS2 with the goal of enhancing lipid production. Phenotype screening under heterotrophic conditions showed that all transformants exhibited increased fatty acid production. In particular, HSbZIP1 37 and 58 showed fatty acid methyl ester (FAME) yields of 859 and 1,052 mg/l, respectively, at day 10 of growth under heterotrophic conditions, and these yields were 74% and 113% higher, respectively, than that of WT. To elucidate the mechanism underlying the improved phenotypes, we identified candidate HSbZIP1-regulated genes via transcription factor binding site analysis. We then selected three genes involved in fatty acid synthesis and investigated mRNA expression levels of the genes by qRT-PCR. The result revealed that the possible HSbZIP1-regulated genes involved in fatty acid synthesis were upregulated in the HSbZIP1 transformants. Taken together, our results demonstrate that HSbZIP1 can be utilized to improve lipid production in Chlorella sp. HS2 under heterotrophic conditions.

Keywords

References

  1. Raheem A, Prinsen P, Vuppaladadiyam AK, Zhao M, Luque R. 2018. A review on sustainable microalgae based biofuel and bioenergy production: Recent developments. J. Clean Prod. 181: 42-59. https://doi.org/10.1016/j.jclepro.2018.01.125
  2. Ho SH, Ye X, Hasunuma T, Chang JS, Kondo A. 2014. Perspectives on engineering strategies for improving biofuel production from microalgae--a critical review. Biotechnol. Adv. 32: 1448-1459. https://doi.org/10.1016/j.biotechadv.2014.09.002
  3. Williams PJL, Laurens LML. 2010. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energ. Environ. Sci. 3: 554-590. https://doi.org/10.1039/b924978h
  4. Sander K, Murthy GS. 2010. Life cycle analysis of algae biodiesel. Int. J. Life Cycle Ass. 15: 704-714. https://doi.org/10.1007/s11367-010-0194-1
  5. Gifuni I, Pollio A, Safi C, Marzocchella A, Olivieri G. 2019. Current bottlenecks and challenges of the microalgal biorefinery. Trends Biotechnol. 37: 242-252. https://doi.org/10.1016/j.tibtech.2018.09.006
  6. Kim J, Yoo G, Lee H, Lim J, Kim K, Kim CW, et al. 2013. Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol. Adv. 31: 862-876. https://doi.org/10.1016/j.biotechadv.2013.04.006
  7. Courchesne NM, Parisien A, Wang B, Lan CQ. 2009. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J. Biotechnol. 141: 31-41. https://doi.org/10.1016/j.jbiotec.2009.02.018
  8. Bajhaiya AK, Moreira JZ, Pittman JK. 2017. Transcriptional engineering of microalgae: Prospects for high-value chemicals. Trends Biotechnol. 35: 95-99. https://doi.org/10.1016/j.tibtech.2016.06.001
  9. Kang NK, Jeon S, Kwon S, Koh HG, Shin SE, Lee B, et al. 2015. Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina. Biotechnol. Biofuels 8: 200. https://doi.org/10.1186/s13068-015-0386-9
  10. Kwon S, Kang NK, Koh HG, Shin SE, Lee B, Jeong BR, et al. 2018. Enhancement of biomass and lipid productivity by overexpression of a bZIP transcription factor in Nannochloropsis salina. Biotechnol. Bioeng. 115: 331-340. https://doi.org/10.1002/bit.26465
  11. Kang NK, Kim EK, Sung MG, Kim YU, Jeong BR, Chang YK. 2019. Increased biomass and lipid production by continuous cultivation of Nannochloropsis salina transformant overexpressing a bHLH transcription factor. Biotechnol. Bioeng. 116: 555-568. https://doi.org/10.1002/bit.26894
  12. Kang NK, Kim EK, Kim YU, Lee B, Jeong WJ, Jeong BR, et al. 2017. Increased lipid production by heterologous expression of AtWRI1 transcription factor in Nannochloropsis salina. Biotechnol. Biofuels 10: 231. https://doi.org/10.1186/s13068-017-0919-5
  13. Zhang J, Hao Q, Bai L, Xu J, Yin W, Song L, et al. 2014. Overexpression of the soybean transcription factor GmDof4 significantly enhances the lipid content of Chlorella ellipsoidea. Biotechnol. Biofuels 7: 128. https://doi.org/10.1186/s13068-014-0128-4
  14. Ibanez-Salazar A, Rosales-Mendoza S, Rocha-Uribe A, Ramirez-Alonso JI, Lara-Hernandez I, Hernandez-Torres A, et al. 2014. Over-expression of Dof-type transcription factor increases lipid production in Chlamydomonas reinhardtii. J. Biotechnol. 184: 27-38. https://doi.org/10.1016/j.jbiotec.2014.05.003
  15. Smetana S, Sandmann M, Rohn S, Pleissner D, Heinz V. 2017. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment. Bioresour. Technol. 245: 162-170. https://doi.org/10.1016/j.biortech.2017.08.113
  16. Song M, Pei H. 2018. The growth and lipid accumulation of Scenedesmus quadricauda during batch mixotrophic/heterotrophic cultivation using xylose as a carbon source. Bioresour. Technol. 263: 525-531. https://doi.org/10.1016/j.biortech.2018.05.020
  17. Perez-Garcia O, Escalante FM, de-Bashan LE, Bashan Y. 2011. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 45: 11-36. https://doi.org/10.1016/j.watres.2010.08.037
  18. Johnson X, Alric J. 2013. Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot. Cell 12: 776-793. https://doi.org/10.1128/EC.00318-12
  19. Mohamed MS, Wei LZ, Ariff AB. 2011. Heterotrophic cultivation of microalgae for production of biodiesel. Recent Pat. Biotechnol. 5: 95-107. https://doi.org/10.2174/187220811796365699
  20. Patel A, Matsakas L, Rova U, Christakopoulos P. 2018. Heterotrophic cultivation of Auxenochlorella protothecoides using forest biomass as a feedstock for sustainable biodiesel production. Biotechnol. Biofuels 11: 169. https://doi.org/10.1186/s13068-018-1173-1
  21. Orfield ND, Levine RB, Keoleian GA, Miller SA, Savage PE. 2015. Growing algae for biodiesel on direct sunlight or sugars: a comparative life cycle assessment. Acs Sustain. Chem. Eng. 3: 386-395. https://doi.org/10.1021/sc5004117
  22. Yun JH, Cho DH, Heo J, Lee YJ, Lee B, Chang YK, et al. 2019. Evaluation of the potential of Chlorella sp. HS2, an algal isolate from a tidal rock pool, as an industrial algal crop under a wide range of abiotic conditions. J. Appl. Phycol. 31: 2245-2258. https://doi.org/10.1007/s10811-019-1751-z
  23. Shin WS, Lee B, Kang NK, Kim YU, Jeong WJ, Kwon JH, et al. 2017. Complementation of a mutation in CpSRP43 causing partial truncation of light-harvesting chlorophyll antenna in Chlorella vulgaris. Sci. Rep. 7: 17929. https://doi.org/10.1038/s41598-017-18221-0
  24. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, 3rd, Smith HO. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6: 343-345. https://doi.org/10.1038/nmeth.1318
  25. Wan M, Rosenberg JN, Faruq J, Betenbaugh MJ, Xia J. 2011. An improved colony PCR procedure for genetic screening of Chlorella and related microalgae. Biotechnol. Lett. 33: 1615-1619. https://doi.org/10.1007/s10529-011-0596-6
  26. Turatsinze JV, Thomas-Chollier M, Defrance M, van Helden J. 2008. Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules. Nat. Protoc. 3: 1578-1588. https://doi.org/10.1038/nprot.2008.97
  27. Hu J, Wang D, Li J, Jing G, Ning K, Xu J. 2014. Genome-wide identification of transcription factors and transcription-factor binding sites in oleaginous microalgae Nannochloropsis. Sci. Rep. 4: 5454. https://doi.org/10.1038/srep05454
  28. Correa LG, Riano-Pachon DM, Schrago CG, dos Santos RV, Mueller-Roeber B, Vincentz M. 2008. The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One 3: e2944. https://doi.org/10.1371/journal.pone.0002944
  29. Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, et al. 2002. bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7: 106-111. https://doi.org/10.1016/S1360-1385(01)02223-3
  30. Broeckx T, Hulsmans S, Rolland F. 2016. The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. J. Exp. Bot. 67: 6215-6252. https://doi.org/10.1093/jxb/erw416
  31. Ryu BG, Kim J, Yoo G, Lim JT, Kim W, Han JI, et al. 2014. Microalgae-mediated simultaneous treatment of toxic thiocyanate and production of biodiesel. Bioresour. Technol. 158: 166-173.
  32. Kotrbacek V, Doubek J, Doucha J. 2015. The chlorococcalean alga Chlorella in animal nutrition: a review. J. Appl. Phycol. 27: 2173-2180. https://doi.org/10.1007/s10811-014-0516-y
  33. Abdelnour SA, Abd El-Hack ME, Arif M, Khafaga AF, Taha AE. 2019. The application of the microalgae Chlorella spp. as a supplement in broiler feed. World Poultry Sci. J. 75: 305-318. https://doi.org/10.1017/S0043933919000047
  34. Yang B, Liu J, Jiang Y, Chen F. 2016. Chlorella species as hosts for genetic engineering and expression of heterologous proteins: Progress, challenge and perspective. Biotechnol. J. 11: 1244-1261. https://doi.org/10.1002/biot.201500617
  35. Gouveia L, Oliveira AC. 2009. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 36: 269-274. https://doi.org/10.1007/s10295-008-0495-6
  36. Yan JY, Kuang YL, Gui XH, Han XF, Yan YJ. 2019. Engineering a malic enzyme to enhance lipid accumulation in Chlorella protothecoides and direct production of biodiesel from the microalgal biomass. Biomass Bioenerg. 122: 298-304. https://doi.org/10.1016/j.biombioe.2019.01.046
  37. Nayak M, Suh WI, Lee B, Chang YK. 2018. Enhanced carbon utilization efficiency and FAME production of Chlorella sp. HS2 through combined supplementation of bicarbonate and carbon dioxide. Energ. Convers. Manage. 156: 45-52. https://doi.org/10.1016/j.enconman.2017.11.002
  38. Kim DW, Shin WS, Sung MG, Lee B, Chang YK. 2019. Light intensity control as a strategy to improve lipid productivity in Chlorella sp. HS2 for biodiesel production. Biomass Bioenerg. 126: 211-219. https://doi.org/10.1016/j.biombioe.2019.05.014
  39. Nayak M, Suh WI, Chang YK, Lee B. 2019. Exploration of two-stage cultivation strategies using nitrogen starvation to maximize the lipid productivity in Chlorella sp. HS2. Bioresour. Technol. 276: 110-118. https://doi.org/10.1016/j.biortech.2018.12.111
  40. Nayak M, Rashid N, Suh WI, Lee B, Chang YK. 2019. Performance evaluation of different cationic flocculants through pH modulation for efficient harvesting of Chlorella sp. HS2 and their impact on water reusability. Renew. Energ. 136: 819-827. https://doi.org/10.1016/j.renene.2019.01.050
  41. Matzke AJ, Matzke MA. 1998. Position effects and epigenetic silencing of plant transgenes. Curr. Opin. Plant Biol. 1: 142-148. https://doi.org/10.1016/S1369-5266(98)80016-2
  42. Blacklock BJ, Jaworski JG. 2006. Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases. Biochem. Biophys. Res. Commun. 346: 583-590. https://doi.org/10.1016/j.bbrc.2006.05.162
  43. Kim HS, Park WK, Lee B, Seon G, Suh WI, Moon M, et al. 2019. Optimization of heterotrophic cultivation of Chlorella sp. HS2 using screening, statistical assessment, and validation. Sci. Rep. 9: 19383. https://doi.org/10.1038/s41598-019-55854-9
  44. Bamgboye AI, Hansen AC. 2008. Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester (FAME) composition. Int. Agrophys. 22: 21-29.
  45. Gopinath A, Puhan S, Nagarajan G. 2009. Relating the cetane number of biodiesel fuels to their fatty acid composition: a critical study. Proc. Inst. Mech. Eng. D 223: 565-583. https://doi.org/10.1243/09544070JAUTO950
  46. Ramos MJ, Fernandez CM, Casas A, Rodriguez L, Perez A. 2009. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 100: 261-268. https://doi.org/10.1016/j.biortech.2008.06.039

Cited by

  1. Microalgal metabolic engineering strategies for the production of fuels and chemicals vol.345, 2020, https://doi.org/10.1016/j.biortech.2021.126529