Browse > Article
http://dx.doi.org/10.4014/jmb.2004.04030

Physiological Response of Escherichia coli W3110 and BL21 to the Aerobic Expression of Vitreoscilla Hemoglobin  

Lara, Alvaro R. (Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana-Cuajimalpa)
Galindo, Janet (Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana-Cuajimalpa)
Jaen, Karim E. (Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana-Cuajimalpa)
Juarez, Mariana (Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana-Cuajimalpa)
Sigala, Juan-Carlos (Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana-Cuajimalpa)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.10, 2020 , pp. 1592-1596 More about this Journal
Abstract
The aerobic growth and metabolic performance of Escherichia coli strains BL21 and W3110 were studied when the Vitreoscilla hemoglobin (VHb) was constitutively expressed in the chromosome. When VHb was expressed, acetate production decreased in both strains and was nearly eliminated in BL21. Transcriptional levels of the glyoxylate shunt genes decreased in both strains when VHb was expressed. However, higher transcription of the α-ketoglutarate dehydrogenase genes were observed for W3110, while for BL21 transcription levels decreased. VHb expression reduced the transcription of the cytochrome bo3 genes only in BL21. These results are useful for better selecting a production host.
Keywords
Vitreoscilla hemoglobin; aerobic cultures; E. coli W3110; BL21; transcriptional analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sabido A, Sigala JC, Hernandez-Chavez G, Flores N, Gosset G, et al. 2014. Physiological and transcriptional characterization of Escherichia coli strains lacking interconversion of phosphoenolpyruvate and pyruvate when glucose and acetate are coutilized. Biotechnol. Bioeng. 111: 1150-1160.   DOI
2 Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}CT}$ method. Methods 25: 402-408.   DOI
3 Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55: 611-622.   DOI
4 Wei XX, Chen GQ. 2008. Applications of the VHb gene vgb for improved microbial fermentation processes. Methods Enzymol. 436: 273-283.   DOI
5 Stark BC, Dikshit KL, Pagilla KR. 2012. The biochemistry of Vitreoscilla hemoglobin. Comput. Struct. Biotechnol. J. 3: e201210002.   DOI
6 Stark BC, Pagilla KR, Dikshit KL. 2015. Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation. Appl. Microbiol. Biotechnol. 99: 1627-1636.   DOI
7 Pablos TE, Sigala JC, Le Borgne S, Lara AR. 2014. Aerobic expression of Vitreoscilla hemoglobin efficiently reduces overflow metabolism in Escherichia coli. Biotechnol. J. 9: 791-799.   DOI
8 Juarez M, Gonzalez-De la Rosa CH, Memun E, Sigala JC, Lara AR. 2017. Aerobic expression of Vitreoscilla hemoglobin improves the growth performance of CHO-K1 cells. Biotechnol. J. 12: 1600438.   DOI
9 Zhang H, Kang X, Xiao N, Gao M, Zhao Y, Zhang B, et al. 2019. Intracellular expression of Vitreoscilla haemoglobin improves lipid production in Yarrowia lipolytica. Lett. Appl. Microbiol. 68: 248-257.   DOI
10 Marisch K, Bayer K, Scharl T, Mairhofer J, Krempl PM, Hummel K, et al. 2013. Comparative analysis of industrial Escherichia coli K- 12 and B strains in high-glucose batch cultivations on process-, transcriptome- and proteome level. PLoS One 8: e70516.   DOI
11 Monk JM, Koza A, Campodonico MA, Machado D, Seoane JM, Palsson BO, et al. 2016. Multi-omics quantification of species variation of Escherichia coli links molecular features with strain phenotypes. Cell Syst. 3: 238-251.   DOI
12 Noronha SB, Yeh HJC, Spande TF, Shiloach J. 2000. Investigation of the TCA cycle and the glyoxylate shunt in Escherichia coli BL21 and JM109 using $^{13}C$-NMR/MS. Biotechnol. Bioeng. 68: 316-327.   DOI
13 Phue JN, Noronha SB, Hattacharyya R, Wolfe AJ, Shiloah J. 2005. Glucose metabolism at high density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and northern blot analyses. Biotechnol. Bioeng. 90: 805-820.   DOI
14 Yang J, Webster DA, Stark BC. 2005. ArcA works with Fnr as a positive regulator of Vitreoscilla (bacterial) hemoglobin gene expression in Escherichia coli. Microbiol. Res. 160: 405-415.   DOI
15 Rowley DL, Fawcett WP, Wolf RE Jr. 1992. Molecular characterization of mutations affecting expression level and growth ratedependent regulation of the Escherichia coli zwf gene. J. Bacteriol. 174: 623-626.   DOI
16 Tsai PS, Hatzimanikatis V, Bailey JE. 1996. Effect of Vitreoscilla hemoglobin dosage on microaerobic Escherichia coli carbon and energy metabolism. Biotechnol. Bioeng. 49: 139-150.   DOI
17 Taymaz-Nikerel H, Borujeni AE, Verheijen PJT, Heijnen JJ, van Gulik WM. 2010. Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry. Biotechnol. Bioeng. 107: 369-381   DOI
18 Maharjan RP, Seeto S, Ferenci T. 2007. Divergence and redundancy of transport and metabolic rate-yield strategies in a single Escherichia coli population. J. Bacteriol. 189: 2350-2358.   DOI
19 Frey AD, Fiaux J, Szyperski T, Wüthrich K, Bailey JE, Kallio PT. 2001. Dissection of central carbon metabolism of hemoglobinexpressing Escherichia coli by $^{13}C$ nuclear magnetic resonance flux distribution analysis in microaerobic bioprocesses. Appl. Environ. Microbiol. 67: 680-687.   DOI
20 Kim TS, Jung HY, Kim SY, Zhang L, Li J, Sigdel S, et al. 2015. Reduction of acetate and lactate contributed to enhancement of a recombinant protein production in E. coli BL21. J. Microbiol. Biotechnol. 25: 1093-1100.   DOI
21 Kim HU, Kim WJ, Lee SY. 2013. Flux-coupled genes and their use in metabolic flux analysis. Biotechnol. J. 8: 1035-1042.   DOI
22 Jaen KE, Velazquez D, Delvigne F, Sigala JC, Lara AR. 2019b. Engineering E. coli for improved microaerobic pDNA production. Bioproc. Biosyst. Eng. 42: 1457-1466.   DOI
23 Jaen KE, Velazquez D, Sigala JC, Lara AR. 2019a. Design of a microaerobically inducible replicon for high-yield plasmid DNA production. Biotechnol. Bioeng. 116: 2514-2525.   DOI