References
- ANSYS Inc. (2019) ANSYS Release Notes Reference, Release 2019 R3.
- Ashby, M.F. (2011) Materials Selection in Mechanical Design, fourth ed. Oxford, UK.
- Carvalho, T.P., Morvan, H.P., Hargreaves, D.M., Oun, H., Kennedy, A. (2017) Pore-scale Numerical Investigation of Pressure Drop Behavior Across Open-cell Metal Foams, Transp. Porous Media, 117(3), pp.311-336. https://doi.org/10.1007/s11242-017-0835-y
- Dixit, T., Ghosh, I. (2018) Simulation Intricacies of Open-cell Metal Foam Fin Subjected to Convective Flow, Appl. Therm. Eng., 137(5), pp.532-544. https://doi.org/10.1016/j.applthermaleng.2018.04.011
- Ha, S.-H., Lee, H.Y., Hemker, K.J., Guest, J.K. (2019) Topology Optimization of Three-Dimensional Woven Materials Using a Ground Structure Design Variable Representation, J. Mech. Des., 141(6), pp.061403-1-10. https://doi.org/10.1115/1.4042114
- Hashin, Z., Shtrikman, S. (1963) A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials, J. Mech. & Phys. Solids, 11(2), pp.127-140. https://doi.org/10.1016/0022-5096(63)90060-7
- Jung, C.G., Kim, S.U. (2016) Study on Material Properties of Composite Materials Using Finite Element Method, J. Comput. Struct. Eng. Inst. Korea, 29(1), pp.61-65. https://doi.org/10.7734/COSEIK.2016.29.1.61
- Skibinski, J., Cwieka, K., Kowalkowski, T., Wysocki, B., Wejrzanowski, T. (2015) The Influence of Pore Size Variation on the Pressure Drop in Open-cell Foams, Mater. & Des., 87(15), pp.650-655. https://doi.org/10.1016/j.matdes.2015.08.079
- Suleiman, A.S., Dukhan, N. (2014) Forced Convection Inside Metal Foam: Simulation over a Long Domain and Analytical Validation, Int. J. Therm. Sci., 86, pp.104-114. https://doi.org/10.1016/j.ijthermalsci.2014.06.022
- Wadly, H.N.G., Fleck, N.A., Evans, A.G. (2003) Fabrication and Structural Performance of Periodic Cellular Metal Sandwich Structures, Compos. Sci. & Technol., 63(16), pp.2331-2343. https://doi.org/10.1016/S0266-3538(03)00266-5
- Wirtz, R.A., Xu, J., Park, J.W., Ruch, D. (2003) Thermal/Fluid Characteristics of 3-D Woven Mesh Structures as Heat Exchanger Surfaces, IEEE Trans. Compon. & Pack. Technol., 26(1), pp.2331-2343.
- Zhang, Y., Ha, S.-H., Sharp, K.W., Guest, J.K., Weihs, T.P. (2015) Fabrication and Mechanical Characterization of 3D Woven Cu Lattice Materials, Mater. & Des., 85, pp.743-751. https://doi.org/10.1016/j.matdes.2015.06.131
- Zhao, L., Ha, S.-H., Sharp, K.W., Geltmacher, A.B., Fonda, R.W. (2014) Permeability Measurements and Modeling of Topology-Optimized Metallic 3-D Woven Lattics, Acta Mater., 81, pp.326-336. https://doi.org/10.1016/j.actamat.2014.08.037
- Zhao, L., Ryan, S.M., Lin, S., Xue, J., Ha, S. (2017) Combining a Distributed Flow Manifold and 3D Woven Metallic Lattices to Enhance Fluidic and Thermal Properties for Heat Transfer Applications, Int. J. Heat & Mass Transf., 108, pp.2169-2180. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.115
- Zhao, L., Ryan, S.M., Ortega, J.K., Ha, S., Sharp, K.W. (2016) Experimental Investigation of 3D Woven Cu Lattices for Heat Exchanger Applications, Int. J. Heat & Mass Transf., 96, pp.296-311. https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.059