DOI QR코드

DOI QR Code

Parametric Modeling and Numerical Simulation of 3-D Woven Materials

3차원 엮임 재료의 파라메트릭 모델링 및 수치적 재료 특성 분석

  • Sim, Kichan (Department of Ship and Ocean Engineering, Korea University of Science and Technology) ;
  • Ha, Seung-Hyun (Department of Ocean Engineering, Korea Maritime and Ocean University)
  • 심이찬 (과학기술연합대학원대학교 선박해양공학과) ;
  • 하승현 (한국해양대학교 해양공학과)
  • Received : 2020.08.12
  • Accepted : 2020.09.02
  • Published : 2020.10.31

Abstract

In this study, the characteristic of a 3-D micro-woven material, which is one of the newly developed periodic open-cell structure, is analyzed through various computational simulations. To increase the accuracy of the numerical simulations, the distance between each directional wire is parameterized using six design variables, and its model geometry is precisely discretized using tetrahedron elements. Using the improved computational model, the material properties of the mechanical, thermal, and fluidic behavior are investigated using commercial software and compared with the previous experimental results. By changing the space between the x- and y-directional wires, a parametric test is performed to determine the tendency of the change in the material properties. In addition, the correlation between two different material properties is investigated using the Ashby chart. The result can further be used in determining the optimal pattern and wire spacing in 3-D micro-woven materials.

본 논문에서는 열린 셀 구조의 3차원 마이크로 엮임 재료에 대해서 다양한 전산 시뮬레이션을 수행하고 재료의 특성을 수치적으로 분석하였다. 엮임 재료에 대한 수치 해석의 정확도를 높이기 위해서 각 축 방향별 와이어 사이의 간격을 6개의 변수로 매개화 하였으며, 기존의 정육면체 대신에 사면체의 요소로 바꾸어 엮임 재료의 기하학적 형상을 더 사실적으로 구현하였다. 개선된 수치모델에 대해서 상용 프로그램을 이용해 기계적, 열역학적, 유체역학적 해석을 수행하였으며, 그 정확도를 검증하기 위해서 기존의 실험 결과와 비교하였다. 또한 x 및 y 방향으로 와이어 간격을 변화시켜 가며, 3차원 엮임 재료의 여러 물성치에 대한 파라메트릭 테스트를 수행하였으며, 물성치의 변화 경향 및 민감도를 살펴보았다. 이를 통해서 3차원 엮임 재료의 물성치 사이의 상관관계를 애슈비 차트와 함께 살펴보았으며, 기존의 벌크 형태의 금속 재료와는 다른 재료 특성들로 인해 그 활용도가 높을 것으로 기대한다.

Keywords

References

  1. ANSYS Inc. (2019) ANSYS Release Notes Reference, Release 2019 R3.
  2. Ashby, M.F. (2011) Materials Selection in Mechanical Design, fourth ed. Oxford, UK.
  3. Carvalho, T.P., Morvan, H.P., Hargreaves, D.M., Oun, H., Kennedy, A. (2017) Pore-scale Numerical Investigation of Pressure Drop Behavior Across Open-cell Metal Foams, Transp. Porous Media, 117(3), pp.311-336. https://doi.org/10.1007/s11242-017-0835-y
  4. Dixit, T., Ghosh, I. (2018) Simulation Intricacies of Open-cell Metal Foam Fin Subjected to Convective Flow, Appl. Therm. Eng., 137(5), pp.532-544. https://doi.org/10.1016/j.applthermaleng.2018.04.011
  5. Ha, S.-H., Lee, H.Y., Hemker, K.J., Guest, J.K. (2019) Topology Optimization of Three-Dimensional Woven Materials Using a Ground Structure Design Variable Representation, J. Mech. Des., 141(6), pp.061403-1-10. https://doi.org/10.1115/1.4042114
  6. Hashin, Z., Shtrikman, S. (1963) A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials, J. Mech. & Phys. Solids, 11(2), pp.127-140. https://doi.org/10.1016/0022-5096(63)90060-7
  7. Jung, C.G., Kim, S.U. (2016) Study on Material Properties of Composite Materials Using Finite Element Method, J. Comput. Struct. Eng. Inst. Korea, 29(1), pp.61-65. https://doi.org/10.7734/COSEIK.2016.29.1.61
  8. Skibinski, J., Cwieka, K., Kowalkowski, T., Wysocki, B., Wejrzanowski, T. (2015) The Influence of Pore Size Variation on the Pressure Drop in Open-cell Foams, Mater. & Des., 87(15), pp.650-655. https://doi.org/10.1016/j.matdes.2015.08.079
  9. Suleiman, A.S., Dukhan, N. (2014) Forced Convection Inside Metal Foam: Simulation over a Long Domain and Analytical Validation, Int. J. Therm. Sci., 86, pp.104-114. https://doi.org/10.1016/j.ijthermalsci.2014.06.022
  10. Wadly, H.N.G., Fleck, N.A., Evans, A.G. (2003) Fabrication and Structural Performance of Periodic Cellular Metal Sandwich Structures, Compos. Sci. & Technol., 63(16), pp.2331-2343. https://doi.org/10.1016/S0266-3538(03)00266-5
  11. Wirtz, R.A., Xu, J., Park, J.W., Ruch, D. (2003) Thermal/Fluid Characteristics of 3-D Woven Mesh Structures as Heat Exchanger Surfaces, IEEE Trans. Compon. & Pack. Technol., 26(1), pp.2331-2343.
  12. Zhang, Y., Ha, S.-H., Sharp, K.W., Guest, J.K., Weihs, T.P. (2015) Fabrication and Mechanical Characterization of 3D Woven Cu Lattice Materials, Mater. & Des., 85, pp.743-751. https://doi.org/10.1016/j.matdes.2015.06.131
  13. Zhao, L., Ha, S.-H., Sharp, K.W., Geltmacher, A.B., Fonda, R.W. (2014) Permeability Measurements and Modeling of Topology-Optimized Metallic 3-D Woven Lattics, Acta Mater., 81, pp.326-336. https://doi.org/10.1016/j.actamat.2014.08.037
  14. Zhao, L., Ryan, S.M., Lin, S., Xue, J., Ha, S. (2017) Combining a Distributed Flow Manifold and 3D Woven Metallic Lattices to Enhance Fluidic and Thermal Properties for Heat Transfer Applications, Int. J. Heat & Mass Transf., 108, pp.2169-2180. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.115
  15. Zhao, L., Ryan, S.M., Ortega, J.K., Ha, S., Sharp, K.W. (2016) Experimental Investigation of 3D Woven Cu Lattices for Heat Exchanger Applications, Int. J. Heat & Mass Transf., 96, pp.296-311. https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.059