DOI QR코드

DOI QR Code

FE Analysis on the Structural Behavior of a Double-Leaf Blast-Resistant Door According to the Support Conditions

지지조건 변화에 따른 양개형 방폭문의 구조거동 유한요소해석

  • Shin, Hyun-Seop (Dep. Infrastruct. Saf. Res., Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Kim, Sung-Wook (Dep. Infrastruct. Saf. Res., Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Moon, Jae-Heum (Dep. Infrastruct. Saf. Res., Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Kim, Won-Woo (Dep. Infrastruct. Saf. Res., Korea Institute of Civil Engineering and Building Technology (KICT))
  • 신현섭 (한국건설기술연구원 인프라안전연구본부) ;
  • 김성욱 (한국건설기술연구원 인프라안전연구본부) ;
  • 문재흠 (한국건설기술연구원 인프라안전연구본부) ;
  • 김원이 (한국건설기술연구원 인프라안전연구본부)
  • Received : 2020.09.14
  • Accepted : 2020.09.23
  • Published : 2020.10.31

Abstract

Double-leaf blast-resistant doors consisting of steel box and slab are application-specific structures installed at the entrances of protective facilities. In these structural systems, certain spacing is provided between the door and wall. However, variation in the boundary condition and structural behavior due to this spacing are not properly considered in the explosion analysis and design. In this study, the structural response and failure behavior based on two variables such as the spacing and blast pressure were analyzed using the finite element method. The results revealed that the two variables affected the overall structural behavior such as the maximum and permanent deflections. The degree of contact due to collision between the door and wall and the impact force applied to the door varied according to the spacing. Hence, the shear-failure behavior of the concrete slab was affected by this impact force. Doors with spacing of less than 10 mm were vulnerable to shear failure, and the case of approximately 15-mm spacing was more reasonable for increasing the flexural performance. For further study, tests and numerical research on the structural behavior are needed by considering other variables such as specifications of the structural members and details of the slab shear design.

외피 구조로서의 강박스와 내부의 철근콘크리트 슬래브로 구성되는 양개형 방폭문은 방호 및 대피 구조물의 출입구에 설치되는 구조체이다. 방폭문과 그 후면의 벽체 사이에는 일정의 설치 간격이 존재하게 되는데, 이로 인한 지지조건 및 구조거동의 변화는 방폭 해석 및 설계에 적절히 고려되지 않고 있다. 본 연구에서는 설치 간격에 의한 지지조건 및 폭압의 변화에 따른 방폭문의 구조응답 및 파괴거동을 유한요소 해석방법으로 비교·분석하였다. 해석 결과에 따르면, 설치 간격 및 폭압의 변화는 방폭문의 최대 처짐 및 영구 처짐과 같은 처짐 거동에 영향을 미치며, 설치 간격이 크고 작음에 따라 방폭문과 벽체의 충돌 접촉 정도 및 이에 의한 충격력이 크게 변화하는 것으로 나타났다. 또한, 방폭문에 작용하는 이와 같은 충격력의 변화는 슬래브의 전단파괴와 같은 파괴거동에 영향을 미치는 주요 요인으로 분석되었다. 설치간격 10mm 미만의 방폭문은 전단파괴에 취약해지고, 15mm 내외 수준인 경우가 휨성능 발현에 비교적 더 적합한 것으로 나타났다. 본 연구에서는 설치 간격 및 폭압과 같이 기본적인 조건의 변화에 한해서 비교 해석을 하였다. 향후, 부재 재원 및 강도변화, 전단설계 여부 등 다양한 변수에 따른 구조거동 변화에 대해 실험적 및 해석적 연구가 필요하다.

Keywords

References

  1. Al-Rifaie, H., Sumelka, W. (2017) Numerical Analysis of Reaction Forces in Blast Resistant Gates, Struct. Eng. & Mech., 63(3), pp.347-359. https://doi.org/10.12989/sem.2017.63.3.347
  2. Amadio, C., Bedon, C. (2014) FE Assessment of Dissipative Devices for the Blast Mitigation of Glazing Facades Supported by Prestress Cables, Struct. Eng. & Mech., 51(1), pp.141-162. https://doi.org/10.12989/sem.2014.51.1.141
  3. American Society of Civil Engineers (ASCE) (2011) Blast Protection of Buildings, ASCE/SEI 59-11, New York, U.S.
  4. Amiri, M.M., Yahyai, M. (2013) Estimation of Damping Ratio of TV Towers Based on Ambient Vibration Monitoring, Struct. Des. Tall & Spec. Build., 22, pp.862-875. https://doi.org/10.1002/tal.733
  5. Anderson, M., Dover, D. (2003) Lightweight, Blast Resistant Doors for Retrofit Protection Against the Terrorist Threat, 2nd International Conference on Innovation in Architecture Engineering and Construction, Loughborough University, UK, pp.23-33.
  6. Andersson, S., Karlsson, H. (2012) Structural Response of Reinforced Concrete Beams Subjected to Explosion, Master Thesis, Chalmers University of Technology, Goteborg, Sweden.
  7. Bai, X., Zhu, L., Yu, T.X. (2017) Saturated Impulse for Pulse-loaded Rectangular Plates with Various Boundary Conditions, Thin-Walled Struct., 119, pp.166-177. https://doi.org/10.1016/j.tws.2017.03.030
  8. Cao, V.V., Ronagh, H.R., Ashraf, M., Baji, H. (2014) A New Damage Index for Reinforced Concrete Structures, Earthq. & Struct., 6(6), pp.581-609. https://doi.org/10.12989/eas.2014.6.6.581
  9. Chen, W., Hao, H. (2013) Numerical Simulations of Stiffened Multi-Arch Double-Layered Panels Subjected to Blast Loading, Int. J. Prot. Struct., 4(2), pp.163-188. https://doi.org/10.1260/2041-4196.4.2.163
  10. Choung, J.M., Shim, C.S., Kim, K.S. (2011) Plasticity and Fracture Behaviors of Marine Structural Steel, Part I: Theoretical Backgrounds of Strain Hardening and Rate Hardening, J. Ocean Eng. & Technol., 25(2), pp.134-144. https://doi.org/10.5574/KSOE.2011.25.2.134
  11. Conrath, E.J., Krauthammer, T., Marchand, K.A., Alakar, P.E. (1999) Structural Design for Physical Security; State of Practice, American Society of Civil Engineer, ASCE, Reston, VA.
  12. Cowper, G.R., Symonds, P.S. (1957) Strain Hardening and Strain Rate Effects in the Impact Loading of Cantilever Beams, Technical Report, No.C11-28, Brown University, U.S.
  13. Crawford, J.E., Wu, Y., Choi, H.J., Magallanes, J.M., Lan, S. (2012) Use and Validation of the Release III K&C Concrete Material Model in LS-DYNA, Karagozian & Case Technical Report TR-11-36.5, California, U.S.
  14. Draganic, H., Varevac, D. (2018) Analysis of Blast Wave Parameters Depending on Air Mesh Size, Shock & Vibr., 2018, pp.1-18. https://doi.org/10.1155/2018/3157457
  15. Ergun, E., Gokkaya, I. (2016) The Effect of the Boundary Conditions on the Impact Behaviors of Stitched Composite Lap Joints, Adv. Compos. Lett., 25(1), pp.1-8.
  16. Friedlander, F.G. (1946) The Diffraction of Sound Pulses, I. Diffraction by A Semi-infinite Plate, Proc. Royal Soc. London A, 186(1006), pp.322-344.
  17. Huang, X., Ma, G.W., Li, J.C. (2010) Damage Assessment of Reinforced Concrete Structural Elements Subjected to Blast Load, Int. J. Prot. Struct., 1(1), pp. 103-124. https://doi.org/10.1260/2041-4196.1.1.103
  18. Hyde, D.W. (1988) User's Guide for Microcomputer Programs CONWEP and FUNPRO, Department of the Army, Mississippi, U.S.
  19. Kim, N.H., Park, K.J., Lee, K.O. (2016) A Study on Structural Stability of Blast Door by Blast Pressure, J. Korean Soc. Saf., 31(3), pp.8-15. https://doi.org/10.14346/JKOSOS.2016.31.3.8
  20. Kim, S.B., Baik, S.H., Lee, J.H., Min, A.S., Koh, Y.C. (2016) Three Companies Producing CBR Facilities; Explosion Test on the Six Blast-Resistant Doors, Institute of HwaRangDae.
  21. Koh, C.G., Ang, K.K., Chan, P.F. (2003) Dynamic Analysis of Shell Structures with Application to Blast Resistant Doors, Shock & Vib., 10(4), pp.269-279. https://doi.org/10.1155/2003/357969
  22. Kristensson, R., Carlsson, M. (2012) Structural Response with Regard to Explosions - Mode Superposition, Damping and Curtailment, Master Thesis, Lund University, Lund, Sweden.
  23. Kuda, F.N., Ucak, S., Osmancikli, G., Turker, T., Bayraktar, A. (2015) Estimation of Damping Ratios of Steel Structures by Operational Modal Analysis Method, J. Construct. Steel Res., 112, pp.61-68. https://doi.org/10.1016/j.jcsr.2015.04.019
  24. Liao, J.J. (2017) A Novel Offshore Platform Blast Wall Design with Energy Absorption Mechanism, Master Thesis, University of Western Australia.
  25. Livermore Software Technology Corporation (LSTC) (2017) LS-DYNA S/W and User's Manuals.
  26. Luo, X., Qian, X., Zhao, H., Huang, P. (2012) Simulation Analysis on Structure Safety of Refuge Chamber Door under Explosion Load, Proc. Eng., 45, pp.923-929. https://doi.org/10.1016/j.proeng.2012.08.260
  27. Malver, L.J., Ross, C.A. (1998) Review of Strain Rate Effects for Concrete in Tension, ACI Mater. J., 95(6), pp.735-739.
  28. Moon, J.H., Shin, H.S., You, Y.J., Kim, W.W., Kim, S.W. (2019) Development of Protective Structure Applied with High-Performance Fiber Reinforced Cementitious Composites, Final Report, Korea Institute of Civil Engineering and Building Technology(KICT).
  29. Nam, J.W., Kim, H.J., Kim, S.B., Byun, K.J. (2007) HFPB Analysis of Concrete Wall Structure Subjected to Blast Loads, J. Korean Soc. Civil Eng., 27(3), pp.433-442.
  30. National Emergency Management Agency (NEMA) (2008) A Study on the Standards and Utilization Plan of CBR Facilities, Policy Research Report, Republic of Korea.
  31. Protective Design Center (PDC) (2008) Single Degree of Freedom Structural Response Limits for Anti-Terrorism Design, PDC TR-06-08, Omaha, NE: U.S. Army Corps of Engineers.
  32. Rezaei, S.H.C. (2011) Response of Reinforced Concrete Elements to High-Velocity Impact Load, PhD Thesis, Purdue University, West Lafayette, Indiana, U.S.
  33. Ross, C.A., Tedesco, J.W., Kuennen, S.T. (1995) Effects of Strain Rate on Concrete Strength, ACI Mater. J., 92(1), pp.37-47.
  34. Shim, K.B., Lee, J.Y., Lee, J.H., Seong, Y.S., Lee, T.S. (2018) Performance Evaluation and Structural Proposal of Sliding Door under Explosive Load, Proceeding of Annual Conference, The Korean Society of Mechanical Engineering, pp.24-29.
  35. Shin, H.S., Kim, W.W., Kim, S.W., Moon, J.H. (2019a) Design Sensitivity Analysis of a Steel-Concrete Double-leaf Blast-resistant Door to Determine the Steel Ratio, J. Korean Soc. Hazard Mitig., 19(4), pp.165-177. https://doi.org/10.9798/kosham.2019.19.4.165
  36. Shin, H.S., Kim, W.W., Park, G.J., Lee, N.K., Moon, J.H., Kim, S.W. (2019b) FE Analysis on the Structural Behavior of the Single-leaf Blast-Resistant Door According to Design Parameter Variation, J. Korea Acad. Ind. Cooper. Soc., 20(11), pp.259-272. https://doi.org/10.5762/KAIS.2019.20.11.259
  37. Standards Australia (2011) Australian/New Zealand Standards, Structural Design Actions - Part 2, Wind Actions, AS/NZS 1170.2:2011; Standards Australia: Sydney, Australia.
  38. Tavakoli, H.R., Kiakojouri, F. (2014) Numerical Dynamic Analysis of Stiffened Plates under Blast Loading, Lat. Am. J. Solids & Struct., 11(2), pp.185-199. https://doi.org/10.1590/S1679-78252014000200003
  39. U.S. Department of Defense (U.S. DoD) (2008) Unified Facilities Criteria; Structures to Resist the Effects of Accidental Explosions, UFC 3-340-02.
  40. Veeredhi, L.S.B., Rao, R. (2015) Studies on the Impact of Explosion on Blast Resistant Stiffened Door Structures, J. Inst. Eng., 96(1), pp.11-20. https://doi.org/10.1007/s40030-014-0103-x
  41. Wang, Y., Zhai, X., Yan, J., Ying, W., Wang, W. (2018) Experimental, Numerical and Analytical Studies on the Aluminum Foam Filled Energy Absorption Connectors under Impact Loading, Thin-Walled Struct., 131, pp.566-576. https://doi.org/10.1016/j.tws.2018.07.056
  42. Yang, K.H., Chung, H.S. (2001) The Shear Behavior of Reinforced High-Strength Concrete Deep Beams Without Shear Reinforcement, J. Archi. Inst. Korea, Struct & Constr., 17(11), pp.11-18.
  43. Zhang, X., Zhao, X., Zhang, Y., Li, Z. (2012) A One-Point Quadrature Element Used in Simulation of Cold Ring Rolling Process, Materials Science Forum, Vols.704/705, Trans Tech Publications, Switzerland, pp.165-171.
  44. Zhu, L., He, X., Chen, F.L., Bai, X. (2017) Effects of the Strain Rate Sensitivity and Strain Hardening on the Saturated Impulse of Plates, Lat. Am. J. Solids & Struct., 14, pp.1273-1292. https://doi.org/10.1590/1679-78253664