• Title/Summary/Keyword: 3-D woven material

Search Result 24, Processing Time 0.026 seconds

Simulation-Based Material Property Analysis of 3D Woven Materials Using Artificial Neural Network (시뮬레이션 기반 3차원 엮임 재료의 물성치 분석 및 인공 신경망 해석)

  • Byungmo Kim;Seung-Hyun Ha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.259-264
    • /
    • 2023
  • In this study, we devised a parametric analysis workflow for efficiently analyzing the material properties of 3D woven materials. The parametric model uses wire spacing in the woven materials as a design parameter; we generated 2,500 numerical models with various combinations of these design parameters. Using MATLAB and ANSYS software, we obtained various material properties, such as bulk modulus, thermal conductivity, and fluid permeability of the woven materials, through a parametric batch analysis. We then used this large dataset of material properties to perform a regression analysis to validate the relationship between design variables and material properties, as well as the accuracy of numerical analysis. Furthermore, we constructed an artificial neural network capable of predicting the material properties of 3D woven materials on the basis of the obtained material database. The trained network can accurately estimate the material properties of the woven materials with arbitrary design parameters, without the need for numerical analyses.

Virtual Experimental Characterization of 3D Orthogonal Woven Composite Materials (직교 직물 복합재료 물성치 예측을 위한 가상 수치 실험)

  • Lee, Chang-Sung;Shin, Hun;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.205-210
    • /
    • 2001
  • In this work, virtual material characterization of 3D orthogonal woven composites is performed to predict the elastic properties by a full scale FEA. To model the complex geometry of 3D orthogonal woven composites, an accurate unit structure is first prepared. The unit structure includes warp yarns, filler yarns, stuffer yams and resin regions and reveals the geometrical characteristics. For this virtual experiments by using finite element analysis, parallel multifrontal solver is utilized and the computed elastic properties are compared to available experimental results and the other analytical results. It is founded that a good agreement between material properties obtained from virtual characterization and experimental results. Using the method of this virtual material characterization, the effects of inconsistent filler yarn distribution on the in-plane shear modulus and filler yarn waviness on the transverse Young's modulus are investigated. Especially, the stiffness knockdown of 3D woven composite structures is simulated by virtual characterization. Considering these results, the virtual material characterization of composite materials can be used for designing the 3D complex composite structures and may supplement the actual experiments.

  • PDF

Deodorization Rate according to Zr-MOF Content and the Properties from Spinning Conditions of Polypropylene Non-woven Fabric Manufactured by Melt-blown Method (Melt-blown법에 의해 제조된 Polypropylene 부직포의 방사 조건별 특성과 기능화된 Zr-MOF 함유량에 따른 소취율 변화에 대한 연구)

  • Choi, Ik-Sung;Min, Mun-Hong;Kim, Han-Il;Lee, Woo-Seung;Noh, Kyung-Gyu;Park, Seong-Woo
    • Textile Coloration and Finishing
    • /
    • v.30 no.3
    • /
    • pp.199-207
    • /
    • 2018
  • In this study, the properties of polypropylene(PP) non-woven fabric spun under various conditions by the Melt-blown method were verified, and the deodorant content and deodorization of PP non-woven fabric after deodorant-treatment were investigated. PP non-woven fabrics are manufactured by varying the temperature of spin beam, hot air temperature and amount, the RPM of collector R/O and the distance between collector and spinneret, which affects the structure of the non-woven fabric. After that, the structural characteristics and air permeability of the non-woven fabric were measured. The experimental results show that the amount of air, the distance between the collector and the spinneret significantly affect the structural characteristics and air permeability of the PP non-woven fabric. And, regardless of the weight of the PP non-woven fabric, the deodorizing effect of UiO-66 MOF deodorant add-on ratio and content was higher.

Design Optimization for 3D Woven Materials Based on Regression Analysis (회귀 분석에 기반한 3차원 엮임 재료의 최적설계)

  • Byungmo, Kim;Kichan, Sim;Seung-Hyun, Ha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.351-356
    • /
    • 2022
  • In this paper, we present the regression analysis and design optimization for improving the permeability of 3D woven materials based on numerical analysis data. First, the parametric analysis model is generated with variables that define the gap sizes between each directional wire of the woven material. Then, material properties such as bulk modulus, thermal conductivity coefficient, and permeability are calculated using numerical analysis, and these material data are used in the polynomial-based regression analysis. The Pareto optimal solution is obtained between bulk modulus and permeability by using multi-objective optimization and shows their trade-off relation. In addition, gradient-based design optimization is applied to maximize the fluid permeability for 3D woven materials, and the optimal designs are obtained according to the various minimum bulk modulus constraints. Finally, the optimal solutions from regression equations are verified to demonstrate the accuracy of the proposed method.

Low-Velocity Impact Characterizations of 3D Orthogonal Woven Composite Plate (3D 직교 직물 복합재료의 충격 거동 및 특성에 관한 수치해석)

  • 지국현;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.170-174
    • /
    • 2002
  • In this study, the material characterization and the dynamic behavior of 3D orthogonal woven composite materials has been studied under transverse central low-velocity impact condition by means of the micromechanical model using finite elements. To build up the micromechanical model considering tow spacing and waviness, an accurate unit structure is stacked in x-y-z direction repeatedly. First, the mechanical properties of 3D orthogonal woven composites are obtained by means of virtual experiment using full scale Finite Element Analysis based on the DNS concepts, and the computed elastic properties are validated by comparison to available experimental results[9]. Second, using the implementation of this validated micromechanical model, 3D transient finite-element analysis is performed considering contact and impact, and the impact behavior of 3D orthogonal woven composite is investigated. A comparison study will be carried out in terms of energy absorption capabilities.

  • PDF

A Study of damage behaviors of 3D orthogonal woven composite plates under Low velocity Impact (3D 직교 직물 복합재료 평판의 미시구조를 고려한 손상 거동 연구)

  • Ji, Kuk-Hyun;Yang, Jeong-Sik;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.53-56
    • /
    • 2005
  • In this study, the material characterization and the dynamic behavior of 3D orthogonal woven composite materials has been studied under transverse central low-velocity impact condition by means of the micromechanical model using finite elements. To build up the micromechanical model considering tow spacing and waviness, an accurate unit structure is stacked in x-y-z direction repeatedly. First, the mechanical properties of 3D orthogonal woven composites arc obtained by means of virtual experiment using full scale Finite Element Analysis based on the DNS concepts, and the computed elastic properties arc validated by comparison to available experimental results. Second, using the implementation of this validated micromechanical model, 3D transient finite-clement analysis is performed considering contact and impact, and the impact behavior of 3D orthogonal woven composite is investigated. A comparison study with the homogenized model will be carried out in terms of global and local behaviors.

  • PDF

Parametric Modeling and Numerical Simulation of 3-D Woven Materials (3차원 엮임 재료의 파라메트릭 모델링 및 수치적 재료 특성 분석)

  • Sim, Kichan;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.331-338
    • /
    • 2020
  • In this study, the characteristic of a 3-D micro-woven material, which is one of the newly developed periodic open-cell structure, is analyzed through various computational simulations. To increase the accuracy of the numerical simulations, the distance between each directional wire is parameterized using six design variables, and its model geometry is precisely discretized using tetrahedron elements. Using the improved computational model, the material properties of the mechanical, thermal, and fluidic behavior are investigated using commercial software and compared with the previous experimental results. By changing the space between the x- and y-directional wires, a parametric test is performed to determine the tendency of the change in the material properties. In addition, the correlation between two different material properties is investigated using the Ashby chart. The result can further be used in determining the optimal pattern and wire spacing in 3-D micro-woven materials.

Derivation of Effective Material Properties of Reinforced Braid Layer Using Detailed 3-D Finite Element Model (상세 유한요소 모델을 이용한 섬유 보강사의 등가물성 유도)

  • Song, Jeong-In;Cho, Jin-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1752-1759
    • /
    • 2004
  • Reinforced braid layer (RBL) in automobile power steering hose plays an important role in power steering system. When the working oil is applied to the power steering hose, RBL suppresses rubber hose deformation from internal pressure and heat expansion. RBL is woven textile composites having a double-row structure of nylon cords twisted with the specific helix angle. In this paper, effective material properties of RBL are estimated using a detailed 3-D finite element model considering its complicated geometry. Numerical experiments based on a superposition method are carried out to simulate uniaxial tensile loading condition.

Study on the Textile Structural Design using SLS 3D Printing Technology -Focused on Design of Flexible Woven Fabric Structure- (SLS 방식의 3D 프린팅 기술을 활용한 직물구조적인 디자인설계 연구 -유연성 있는 직조구조 직물설계를 중심으로-)

  • Song, HaYoung
    • Journal of Fashion Business
    • /
    • v.23 no.3
    • /
    • pp.67-84
    • /
    • 2019
  • Since the early 2000s, various fashion design products that use 3D printing technology have constantly been introduced to the fashion industry. However, given the nature of 3D printing technology, the flexible characteristics of material of textile fabrics is yet to be achieved. The aim of this study is to develop the optimal design conditions for production of flexible and elastic 3D printing fabric structure based on plain weave, which is the basic structure in fabric weaving using SLS 3D printing technology. As a the result this study aims to utilize appropriate design conditions as basic data for future study of flexible fashion product design such as textile material. Weaving structural design using 3D printing is based on the basic plain weave, and the warp & weft thickness of 4mm, 3mm, 2mm, 1.5mm, 1mm, and 0.7mm as expressed in Rhino 6.0 CAD software program for making a 3D model of size $1800mm{\times}180mm$ each. The completed 3D digital design work was then applied to the EOS SLS Machine through Maker ware, a program for 3D printer output, using polyamide 12 material which has a rigid durability strength, and the final results obtained through bending flexibility tests. In conclusion, when designing the fabric structure design in 3D printing using SLS method through application of polyamide 12 material, the thickness of 1 mm presented the optimal condition in order to design a durable digital textile structure with flexibility and elasticity of the 3D printing result.

low Velocity Impact Behavior Analysis of 3D Woven Composite Plate Considering its Micro-structure (미시구조를 고려한 3차원 직교직물 복합재료 평판의 저속충격 거동해석)

  • Ji, Kuk-Hyun;Kim, Seung-Jo
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.44-51
    • /
    • 2005
  • In this paper, we developed the direct numerical simulation(DNS) model considering the geometry of yams which consist of 3D orthogonal woven composite materials, and using this model, the dynamic behavior of under transverse low-velocity impact has been studied. To build up the micromechanical model considering tow spacing and waviness, an accurate unit structure is presented and used in building structural plate model based on DNS. For comparison, DNS results are compared with those of the micromechanical approach which is based on the global equivalent material properties obtained by DNS static numerical tests. The effects with yarn geometrical irregularities which are difficult to consider in a macroscopic approach are also investigated by the DNS model. Finally, the multiscale model based on the DNS concepts is developed to enhance efficiency of analysis with real sized numerical specimen and macro/micro characteristics are presented.