DOI QR코드

DOI QR Code

임플란트 배열과 하중 방향이 임플란트와 치조골에 미치는 유한요소 응력분석

Effects of implant alignment and load direction on mandibular bone and implant: finite element analysis

  • 정현주 (전남대학교 치과대학 치주과) ;
  • 박찬 (전남대학교 치과대학 보철과) ;
  • 윤귀덕 (전남대학교 치과대학 보철과) ;
  • 임현필 (전남대학교 치과대학 보철과) ;
  • 박상원 (전남대학교 치과대학 보철과) ;
  • 양홍서 (전남대학교 치과대학 보철과)
  • Chung, Hyunju (Department of Periodontology, School of Dentistry, Chonnam National University) ;
  • Park, Chan (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Yun, Kwi-Dug (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Lim, Hyun-Pil (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Park, Sang-Won (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Yang, Hongso (Department of Prosthodontics, School of Dentistry, Chonnam National University)
  • 투고 : 2020.07.01
  • 심사 : 2020.07.25
  • 발행 : 2020.09.30

초록

목적: 수복물에 교합력을 가할때 식립된 임플란트의 개수, 배열 및 위치에 따른 임플란트, 보철물 및 지지 골에 발생하는 응력의 차이를 분석하고자 한다. 연구 재료 및 방법: 하악에 임플란트가 식립되어 고정성 보철물을 지지하는 4 종류의 3D 유한요소 모형을 제작하였다. 모델 M1은 2개의 임플란트 가운데에 가공치를 배열하였고, 모델 M2는 2개의 임플란트 외측에 캔티레버 가공치를 배열하였다. 모델 M3과 M4는 3개의 임플란트를 각각 일렬로 배열되거나, 엇갈리게 배열하였다. 총 120 N 크기의 수직력과 45도 측방력을 가하였고, 유한요소 응력 분석을 시행하였다 결과: 측방력 하중에 의해 발생한 최대 응력은 수직력 하중에 의한 것 보다 임플란트 부위에서 3.4 - 5.1배 더 컸고, 지지골 내에서는 3.5 - 8.3배 더 컸다. 모델 M2 의 고정성 보철물의 캔티레버 연결부에서 가장 큰 응력이 집중되었다. 임플란트 개수가 3개인 모델들이 2개인 경우보다 더 낮은 응력이 발생하였으나 M3과 M4에서 일렬 배열과 엇갈린 배열간의 응력 발생 차이는 작았다. 결론: 임플란트 배열의 엇갈림 정도는 응력 크기에 별 차이를 발생하지 않았으나, 캔티래버의 존재나 임플란트의 개수의 차이는 큰 영향을 주었다.

Purpose: To evaluate the effects of load direction, number of implants, and alignment of implant position on stress distribution in implant, prosthesis, and bone tissue. Materials and Methods: Four 3D models were made to simulate posterior mandible bone block: two implants and 3-unit fixed dental prosthesis (FDP) with a pontic in the center (model M1), two implants and 3-unit FDP with a cantilever pontic at one end (model M2), FDP supported by three implants with straight line placement (model M3) and FDP supported by three implants with staggered implant configuration (model M4). The applied force was 120 N axially or 120 N obliquely. Results: Peak von Mises stresses caused by oblique occlusal force were 3.4 to 5.1 times higher in the implant and 3.5 to 8.3 times higher in the alveolar bone than those stresses caused by axial occlusal force. In model M2, the connector area of the distal cantilever in the prosthesis generated the highest von Mises stresses among all models. With the design of a large number of implants, low stresses were generated. When three implants were placed, there were no significant differences in the magnitude of stress between staggered arrangement and straight arrangement. Conclusion: The effect of staggering alignment on implant stress was negligible. However, the number of implants had a significant effect on stress magnitude.

키워드

참고문헌

  1. Liao S, Zhu X, Xie J, Sohodeb VK, Ding X. Influence of trabecular bone on peri-implant stress and strain based on micro-CT finite element modeling of beagle dog. Biomed Res Int 2016;2016:3926941. https://doi.org/10.1155/2016/3926941
  2. de Souza Batista VE, Verri FR, de Faria Almeida DA, Santiago Jr JF, Lemos CAA, Pellizzer EP. Evaluation of the effect of an offset implant configuration in the posterior maxilla with external hexagon implant platform: A 3-dimensional finite element analysis. J Prosthet Dent 2017;118:363-71. https://doi.org/10.1016/j.prosdent.2016.10.033
  3. Sato Y, Uchida K, Okuyama T, Kitagawa N. Verfication of the influence of the arrangement of implants on the load distribution (a well-known figure by Rangert). J Oral Rehabil 2012;39:446-9. https://doi.org/10.1111/j.1365-2842.2011.02270.x
  4. Huang HL, Lin CL, Ko CC, Chang CH, Hsu JT, Huang JS. Stress analysis of implant-supported partial prostheses in anisotropic mandibular bone: in-line versus offset placements of implant. J Oral Rehabil 2006;33:501-8. https://doi.org/10.1111/j.1365-2842.2005.01598.x
  5. Alencar SMM, Nogueira LBLV, de Moura WL, Rubo JH, de Oliveira Silva TS, Martins GAS, Moura CDVS. FEA of peri-implant stresses in fixed partial denture prostheses with cantilevers. J Prosthodont 2017;26:150-5. https://doi.org/10.1111/jopr.12384
  6. Misch CE, Suzuki JB, Misch-Dietsh FM, Bidez MW. A positive correlation between occlusal trauma and peri-implant bone loss: Literature support. Implant Dent 2005;14:108-16. https://doi.org/10.1097/01.id.0000165033.34294.db
  7. Sertgoz A, Guvener S. Finite element analysis of the effect of cantilever and implant length on stress distribution in an implant-supported fixed prosthesis. J Prosthet Dent 1996;76:165-9. https://doi.org/10.1016/S0022-3913(96)90301-7
  8. Anami LC, da Costa Lima JM, Corazza PH, Yamamoto ETC, Bottino MA, Borges ALS. Finite element analysis of the influence of geometry and design of zirconia crowns on stress distribution. J Prosthodont 2015;24:146-51. https://doi.org/10.1111/jopr.12175
  9. Merdji A, Bouiadjra BB, Achour T, Serier B, Chikh BO, Feng ZO. Stress analysis in dental prosthesis. Comput Mater Sci 2010;49:126-33. https://doi.org/10.1016/j.commatsci.2010.04.035
  10. Rangert BR, Sullivan RM, Jemt TM. Load factor control for implants in the posterior partially edentulous segment. Int J Oral Maxillofac Implants 1997;12:360-70.
  11. Storelli S, del Fabbro M, Scanferla M, Palandrani G, Romeo E. Implant supported cantilevered fixed dental rehabilitations in partially edentulous patients: Systematic review of the literature. Part I. Clin Oral Impl Res 2018;29 Suppl 18:253-74.
  12. Wennstrom J, Zurdo J, Karlsson S, Ekestubbe A, Grondahl K, Lindhe J. Bone level change at implant-supported fixed partial dentures with and without cantilever extension after 5 years in function. J Clin Periodontol 2004;31:1077-83. https://doi.org/10.1111/j.1600-051X.2004.00603.x