DOI QR코드

DOI QR Code

폴리카보네이트 임시수복재료의 물성 평가

Evaluation of physical properties of polycarbonate temporary restoration materials

  • 김광윤 (조선대학교 치과대학 치과보철학교실) ;
  • 곽영훈 (조선대학교 치과대학 치과보철학교실) ;
  • 김희중 (조선대학교 치과대학 치과보철학교실)
  • Kim, Gwang-Yun (Department of Prosthodontics, College of Dentistry, Chosun University) ;
  • Kwak, Young-Hun (Department of Prosthodontics, College of Dentistry, Chosun University) ;
  • Kim, Hee-Jung (Department of Prosthodontics, College of Dentistry, Chosun University)
  • 투고 : 2020.06.26
  • 심사 : 2020.07.30
  • 발행 : 2020.09.30

초록

목적: 현재 상용화하여 사용되는 임시 수복물 재료와 새롭게 대두되는 재료들의 기계적 성질을 실험하고, 평가하는 것이다. 연구 재료 및 방법: Polymethyl methacrylate (PMMA) 2종, polyetheretherketone (PEEK), polycarbonate 4군의 고분자 재료들을 평가하였고, 표면 경도, 굴곡강도, 저작 시 마모도, 마모 양상 4가지의 기계적 물성을 실험하였다. 시편의 3축 굽힘 강도와 비커스 경도 테스트는 각각 만능 시험기를 사용하여 측정하였고, 저작 시험기를 이용하여 100,000회의 저작 시험 후 주사 전자 현미경으로 미세구조를 관찰하고 전, 후 무게를 비교하였다. 통계적 유의성 평가를 위해 kruskal wallis test를 시행하였다. 결과: PEEK의 굽힘 강도와 비커스 경도가 가장 높게 나타났으며, PC, PMMA-H, PMMA-T 순으로 나타났다. 미세구조 표면은 PEEK 군에서 거칠기 형태가 가장 적게 나타났으며, PC, PMMA-H, PMMA-T 순으로 적게 나타났다. 결론: PC는 임시치아 제작에 적용할 수 있는 충분한 기계적 성질을 가진 것으로 사료된다. 그러나, 실제 임상 적용을 위해서는 생체 친화성과 같은 추가적인 연구가 필요할 것으로 사료된다.

Purpose: The purpose is to test and evaluate the physical properties of commonly used temporary restoration materials and newly emerged materials. Materials and Methods: Four groups of polymer materials were evaluated: Polymethyl methacrylate (PMMA) 2 groups, Polyetheretherketone (PEEK), Polycarbonate. Four physical properties were tested: surface hardness, bending strength, abrasion resistance during wear, wear behavior. The 3-axis bending strength and Vickers hardness test were measured using a universal testing machines respectively. The microstructure was observed with a scanning electron microscope and weight comparison was evaluated after 100,000 chewing tests using a chewing simulator. Kruskal wallis test was performed to evaluate statistical significance. Results: The four groups showed the highest flexural strength and Vickers hardness of PEEK, followed by PC, PMMA-H, PMMA-T. Microstructure observation also showed the least surface roughness in the PEEK group, followed by PC, PMMA-H, PMMA-T. Conclusion: PC is considered to have sufficient mechanical properties that can be applied to the manufacture of temporary teeth. However, further studies, such as biocompatibility, are considered to be necessary for practical clinical applications.

키워드

참고문헌

  1. Prasad DK, Shetty M, Alva H, Prasad DA. Provisional Restorations in Prosthodontic Rehabilitations - Concepts, Materials and Techniques. J Heal Allied Sci NU 2012;02:72-7.
  2. Burns DR, Beck DA, Nelson SK. A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: Report of the Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. J Prosthet Dent 2003;90:474-97. https://doi.org/10.1016/S0022-3913(03)00259-2
  3. Singh A, Garg S. Comparative evaluation of flexural strength of provisional crown and bridge materialsan invitro study. J Clin Diagn Res 2016;10:ZC72-7.
  4. Abdullah AO, Tsitrou EA, Pollington S. Comparative in vitro evaluation of CAD/CAM vs conventional provisional crowns. J Appl Oral Sci 2016;24:258-63. https://doi.org/10.1590/1678-775720150451
  5. Tahayeri A, Morgan M, Fugolin AP, Bompolaki D, Athirasala A, Pfeifer CS, Ferracane JL, Bertassoni LE. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater 2018;34:192-200. https://doi.org/10.1016/j.dental.2017.10.003
  6. Vallittu PK. The effect of glass fiber reinforcement on the fracture resistance of a provisional fixed partial denture. J Prosthet Dent 1998;79:125-30. https://doi.org/10.1016/S0022-3913(98)70204-5
  7. Tjong SC. Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R Rep 2006;53:73-197. https://doi.org/10.1016/j.mser.2006.06.001
  8. Balkenhol M, Kohler H, Orbach K, Wostmann B. Fracture toughness of cross-linked and non-crosslinked temporary crown and fixed partial denture materials. Dent Mater 2009;25:917-28. https://doi.org/10.1016/j.dental.2009.01.099
  9. Karaokutan I, Sayin G, Kara O. In vitro study of fracture strength of provisional crown materials. J Adv Prosthodont 2015;7:27-31. https://doi.org/10.4047/jap.2015.7.1.27
  10. Hong MG, Shin SY. Comparative study of surface modification on bond strength of polyetherketoneketone adhesively bonded to resins for temporary restoration. J Dent Rehabil Appl Sci 2020;36:1-11. https://doi.org/10.14368/jdras.2020.36.1.1
  11. Lee KS, Shin JH, Kim JE, Kim JH, Lee WC, Shin SW, Lee JY. Biomechanical Evaluation of a Tooth Restored with High Performance Polymer PEKK Post-Core System: A 3D Finite Element Analysis. Biomed Res Int 2017;2017:1373127.
  12. Han KH, Lee JY, Shin SW. Implant- and Tooth-Supported Fixed Prostheses Using a High-Performance Polymer (Pekkton) Framework. Int J Prosthodont 2016;29:451-4. https://doi.org/10.11607/ijp.4688
  13. Zoidis P, Papathanasiou I. Modified PEEK resinbonded fixed dental prosthesis as an interim restoration after implant placement. J Prosthet Dent 2016;116:637-41. https://doi.org/10.1016/j.prosdent.2016.04.024
  14. Hallmann L, Mehl A, Sereno N, Hammerle CHF. The improvement of adhesive properties of PEEK through different pre-treatments. Appl Surf Sci 2012;258:7213-8. https://doi.org/10.1016/j.apsusc.2012.04.040
  15. Haleem A, Javaid M. Polyether ether ketone (PEEK) and its manufacturing of customised 3D printed dentistry parts using additive manufacturing. Clin Epidemiol Glob Health 2019;7:654-60. https://doi.org/10.1016/j.cegh.2019.03.001
  16. Skirbutis G, Dzingute A, Masiliunaite V, Sulcaite G, Zilinskas J. PEEK polymer's properties and its use in prosthodontics. A review. Stomatologija 2018;20:54-8.
  17. Lui JL, Setcos JC, Phillips RW. Temporary restorations: a review. Oper Dent 1986;11:103-10.
  18. King CJ, Young FA, Cleveland JL. Polycarbonate resin and its use in the matrix technique for temporary coverage. J Prosthet Dent 1973;30:789-94. https://doi.org/10.1016/0022-3913(73)90232-1
  19. Mathur S, Shah A, Makwana R, Shah M, Shah A, Jathal N. Provisional restorative materials in fixed prosthodontics: A comprehensive review. B Bhavnagar Univ J Dent 2013;3:49-57.
  20. Skal's'kyi VR, Makeev VF, Stankevych OM, Kyrmanov OS, Vynnyts'ka SI. Alternation of the types of fracture for dental polymers in different stages of crack propagation. Mater Dent 2015;50:836-43.
  21. Rayyan MM, Aboushelib M, Sayed NM, Ibrahim A, Jimbo R. Comparison of interim restorations fabricated by CAD/CAM with those fabricated manually. J Prosthet Dent 2015;114:414-9. https://doi.org/10.1016/j.prosdent.2015.03.007
  22. Digholkar S, Madhav VNV, Palaskar J. Evaluation of the flexural strength and microhardness of provisional crown and bridge materials fabricated by different methods. J Indian Prosthodont Soc 2016;16:328-34. https://doi.org/10.4103/0972-4052.191288
  23. Kassem YM, Alshimy AM, El-Shabrawy SM. Mechanical Evaluation of Polyetheretherketone Compared With Zirconia As a Dental Implant Material. Alexandria Dent J 2019;44:61-6. https://doi.org/10.21608/adjalexu.2019.57364
  24. Schwitalla AD, Spintig T, Kallage I, Muller WD. Flexural behavior of PEEK materials for dental application. Dent Mater 2015;31:1377-84. https://doi.org/10.1016/j.dental.2015.08.151
  25. Wimmer T, Huffmann AMS, Eichberger M, Schmidlin PR, Stawarczyk B. Two-body wear rate of PEEK, CAD/CAM resin composite and PMMA: Effect of specimen geometries, antagonist materials and test set-up configuration. Dent Mater 2016;32:127-36. https://doi.org/10.1016/j.dental.2015.11.033
  26. Kwon SJ, Lawson NC, McLaren EE, Nejat AH, Burgess JO. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J Prosthet Dent 2018;120:132-7. https://doi.org/10.1016/j.prosdent.2017.08.004