DOI QR코드

DOI QR Code

Antinociceptive role of neurotensin receptor 1 in rats with chemotherapy-induced peripheral neuropathy

  • Yin, Mei (Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School) ;
  • Kim, Yeo-Ok (Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School) ;
  • Choi, Jeong-Il (Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School) ;
  • Jeong, Seongtae (Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School) ;
  • Yang, Si-Ho (Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School) ;
  • Bae, Hong-Beom (Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School) ;
  • Yoon, Myung-Ha (Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School)
  • Received : 2020.05.11
  • Accepted : 2020.07.21
  • Published : 2020.09.30

Abstract

Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect of anti-cancer drugs. Neurotensin receptors (NTSRs) are widely distributed within the pain circuits in the central nervous system. The purpose of this study was to determine the role of NTSR1 by examining the effects of an NTSR1 agonist in rats with CIPN and investigate the contribution of spinal serotonin receptors to the antinociceptive effect. Methods: Sprague-Dawley rats (weight 150-180 g) were used in this study. CIPN was induced by injecting cisplatin (2 mg/kg) once a day for 4 days. Intrathecal catheters were placed into the subarachnoid space of the CIPN rats. The antiallodynic effects of intrathecally or intraperitoneally administered PD 149163, an NTSR1 agonist, were evaluated. Furthermore, the levels of serotonin in the spinal cord were measured by high-performance liquid chromatography. Results: Intrathecal or intraperitoneal PD 149163 increased the paw withdrawal threshold in CIPN rats. Intrathecal administration of the NTSR1 antagonist SR 48692 suppressed the antinociceptive effect of PD 149163 given via the intrathecal route, but not the antinociceptive effect of intraperitoneally administered PD 149163. Intrathecal administration of dihydroergocristine, a serotonin receptor antagonist, suppressed the antinociceptive effect of intrathecally administered, but not intraperitoneally administered, PD 149163. Injecting cisplatin diminished the serotonin level in the spinal cord, but intrathecal or intraperitoneal administration of PD 149163 did not affect this reduction. Conclusions: NTSR1 played a critical role in modulating CIPN-related pain. Therefore, NTSR1 agonists may be useful therapeutic agents to treat CIPN. In addition, spinal serotonin receptors may be indirectly involved in the effect of NTSR1 agonist.

Keywords

References

  1. Flatters SJL, Dougherty PM, Colvin LA. Clinical and preclinical perspectives on Chemotherapy-Induced Peripheral Neuropathy (CIPN): a narrative review. Br J Anaesth 2017; 119: 737-49. https://doi.org/10.1093/bja/aex229
  2. Addington J, Freimer M. Chemotherapy-induced peripheral neuropathy: an update on the current understanding. F1000Res 2016; 5: F1000 Faculty Rev-1466.
  3. Fukuda Y, Li Y, Segal RA. A mechanistic understanding of axon degeneration in chemotherapy-induced peripheral neuropathy. Front Neurosci 2017; 11: 481. https://doi.org/10.3389/fnins.2017.00481
  4. Bhandare AM, Kshirsagar AD, Vyawahare NS, Hadambar AA, Thorve VS. Potential analgesic, anti-inflammatory and antioxidant activities of hydroalcoholic extract of Areca catechu L. nut. Food Chem Toxicol 2010; 48: 3412-7. https://doi.org/10.1016/j.fct.2010.09.013
  5. Paice JA. Clinical challenges: chemotherapy-induced peripheral neuropathy. Semin Oncol Nurs 2009; 25(2 Suppl 1): S8-19. https://doi.org/10.1016/j.soncn.2009.03.013
  6. Hile ES, Fitzgerald GK, Studenski SA. Persistent mobility disability after neurotoxic chemotherapy. Phys Ther 2010; 90: 1649-57. https://doi.org/10.2522/ptj.20090405
  7. Carraway R, Leeman SE. The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J Biol Chem 1973; 248: 6854-61. https://doi.org/10.1016/S0021-9258(19)43429-7
  8. Jennes L, Stumpf WE, Kalivas PW. Neurotensin: topographical distribution in rat brain by immunohistochemistry. J Comp Neurol 1982; 210: 211-24. https://doi.org/10.1002/cne.902100302
  9. Buhler AV, Choi J, Proudfit HK, Gebhart GF. Neurotensin activation of the NTR1 on spinally-projecting serotonergic neurons in the rostral ventromedial medulla is antinociceptive. Pain 2005; 114: 285-94. https://doi.org/10.1016/j.pain.2004.12.031
  10. Buhler AV, Proudfit HK, Gebhart GF. Neurotensin-produced antinociception in the rostral ventromedial medulla is partially mediated by spinal cord norepinephrine. Pain 2008; 135: 280-90. https://doi.org/10.1016/j.pain.2007.06.010
  11. Petkova-Kirova P, Rakovska A, Zaekova G, Ballini C, Corte LD, Radomirov R, et al. Stimulation by neurotensin of dopamine and 5-hydroxytryptamine (5-HT) release from rat prefrontal cortex: possible role of NTR1 receptors in neuropsychiatric disorders. Neurochem Int 2008; 53: 355-61. https://doi.org/10.1016/j.neuint.2008.08.010
  12. Roussy G, Dansereau MA, Dore-Savard L, Belleville K, Beaudet N, Richelson E, et al. Spinal NTS1 receptors regulate nociceptive signaling in a rat formalin tonic pain model. J Neurochem 2008; 105: 1100-14. https://doi.org/10.1111/j.1471-4159.2007.05205.x
  13. Smith KE, Boules M, Williams K, Richelson E. NTS1 and NTS2 mediate analgesia following neurotensin analog treatment in a mouse model for visceral pain. Behav Brain Res 2012; 232: 93-7. https://doi.org/10.1016/j.bbr.2012.03.044
  14. Guillemette A, Dansereau MA, Beaudet N, Richelson E, Sarret P. Intrathecal administration of NTS1 agonists reverses nociceptive behaviors in a rat model of neuropathic pain. Eur J Pain 2012; 16: 473-84. https://doi.org/10.1016/j.ejpain.2011.07.008
  15. Bardin L. The complex role of serotonin and 5-HT receptors in chronic pain. Behav Pharmacol 2011; 22: 390-404. https://doi.org/10.1097/FBP.0b013e328349aae4
  16. Ward SJ, McAllister SD, Kawamura R, Murase R, Neelakantan H, Walker EA. Cannabidiol inhibits paclitaxel-induced neuropathic pain through 5-HT(1A) receptors without diminishing nervous system function or chemotherapy efficacy. Br J Pharmacol 2014; 171: 636-45. https://doi.org/10.1111/bph.12439
  17. Heaulme M, Leyris R, Soubrie P, Le Fur G. Stimulation by neurotensin of (3H)5-hydroxytryptamine (5HT) release from rat frontal cortex slices. Neuropeptides 1998; 32: 465-71. https://doi.org/10.1016/S0143-4179(98)90073-7
  18. Jolas T, Aghajanian GK. Neurotensin excitation of serotonergic neurons in the dorsal raphe nucleus of the rat in vitro. Eur J Neurosci 1996; 8: 153-61. https://doi.org/10.1111/j.1460-9568.1996.tb01176.x
  19. Lin H, Heo BH, Yoon MH. A new rat model of cisplatininduced neuropathic pain. Korean J Pain 2015; 28: 236-43. https://doi.org/10.3344/kjp.2015.28.4.236
  20. Yaksh TL, Rudy TA. Chronic catheterization of the spinal subarachnoid space. Physiol Behav 1976; 17: 1031-6. https://doi.org/10.1016/0031-9384(76)90029-9
  21. Han YK, Lee SH, Jeong HJ, Kim MS, Yoon MH, Kim WM. Analgesic effects of intrathecal curcumin in the rat formalin test. Korean J Pain 2012; 25: 1-6. https://doi.org/10.3344/kjp.2012.25.1.1
  22. Kim YO, Song JA, Kim WM, Yoon MH. Antiallodynic effect of intrathecal Korean Red Ginseng in cisplatin-induced neuropathic pain rats. Pharmacology 2020; 105: 173-80. https://doi.org/10.1159/000503259
  23. Tetreault P, Beaudet N, Perron A, Belleville K, Rene A, Cavelier F, et al. Spinal NTS2 receptor activation reverses signs of neuropathic pain. FASEB J 2013; 27: 3741-52. https://doi.org/10.1096/fj.12-225540
  24. Roussy G, Dansereau MA, Baudisson S, Ezzoubaa F, Belleville K, Beaudet N, et al. Evidence for a role of NTS2 receptors in the modulation of tonic pain sensitivity. Mol Pain 2009; 5: 38. https://doi.org/10.1186/1744-8069-5-38
  25. Boules M, McMahon B, Warrington L, Stewart J, Jackson J, Fauq A, et al. Neurotensin analog selective for hypothermia over antinociception and exhibiting atypical neurolepticlike properties. Brain Res 2001; 919: 1-11. https://doi.org/10.1016/S0006-8993(01)02981-X
  26. Demeule M, Beaudet N, Regina A, Besserer-Offroy E, Murza A, Tetreault P, et al. Conjugation of a brain-penetrant peptide with neurotensin provides antinociceptive properties. J Clin Invest 2014; 124: 1199-213. https://doi.org/10.1172/JCI70647
  27. Banks WA, Wustrow DJ, Cody WL, Davis MD, Kastin AJ. Permeability of the blood-brain barrier to the neurotensin8-13 analog NT1. Brain Res 1995; 695: 59-63. https://doi.org/10.1016/0006-8993(95)00836-F
  28. Hillhouse TM, Prus AJ. Effects of the neurotensin $NTS_{1}$ receptor agonist PD 149163 on visual signal detection in rats. Eur J Pharmacol 2013; 721: 201-7. https://doi.org/10.1016/j.ejphar.2013.09.035
  29. Clineschmidt BV, Martin GE, Veber DF. Antinocisponsive effects of neurotensin and neurotensin-related peptides. Ann N Y Acad Sci 1982; 400: 283-306. https://doi.org/10.1111/j.1749-6632.1982.tb31576.x
  30. Fang FG, Moreau JL, Fields HL. Dose-dependent antinociceptive action of neurotensin microinjected into the rostroventromedial medulla of the rat. Brain Res 1987; 420: 171-4. https://doi.org/10.1016/0006-8993(87)90255-1

Cited by

  1. Chemotherapy-induced peripheral neuropathy: bench to clinical practice vol.33, pp.4, 2020, https://doi.org/10.3344/kjp.2020.33.4.291
  2. Systemically administered neurotensin receptor agonist produces antinociception through activation of spinally projecting serotonergic neurons in the rostral ventromedial medulla vol.34, pp.1, 2020, https://doi.org/10.3344/kjp.2021.34.1.58